摘要
研究一类非线性Cahn-Hiliard方程的谱方法和拟谱方法,构造了一类弱条件稳定的全离散显式谱格式及拟谱格式.利用非线性函数有界延拓法和Sobolev不等式证明了格式的收敛性和稳定性.该拟谱格式为一显式,但具有隐格式的收敛精度与稳定性,容易在计算机上实现.最后给出数值结果.
The concept of minimal Urysohn L fuzzy topological spaces is introduced and it is proved that an L fuzzy topological space is minimal Urysohn L fuzzy space if and only if it is Urysohn L fuzzy topological space and every Urysohn ideal base with and unique cluster point converges to that point by means of fuzzy Urysohn ideal base. Moreover it is proved that an minimal Urysohn L fuzzy topological space is not only an L fuzzy Urysohn closed space but also an L fuzzy semiregular space. The topological properties of minimal Urysohn L fuzzy topological spaces are investigated.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第3期17-20,共4页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金
关键词
谱方法
C-H方程
非线性
隐格式
拟谱格式
数值解
L fuzzy topological space
Urysohn L fuzzy topological space
Urysohn ideal base
Urysohn L fuzzy closed space
Urysohn L fuzzy semiregular space