期刊文献+

基于差分特征和高斯混合模型的湖南方言识别 被引量:4

Hunan dialects identification based on GMM and difference speech feature
下载PDF
导出
摘要 语音的韵律是区分汉语方言的重要语音声学特征,而语音的差分特征是语音韵律的重要体现。采用差分特征ΔMFCC和ΔΔMFCC作为特征参数,用高斯混合模型(GMM)作为训练模型,通过计算测试样本的似然概率来识别方言的类型。用该方法对长沙方言、邵阳方言、衡阳方言和普通话进行了识别研究,并与采用MFCC作为特征参数的识别效果进行了比较。实验结果表明差分特征具有识别率高、抗噪声性能更好等优点。 Rhythm of speech is an important acoustic distinction between different Chinese dialects,and the difference feature is an important reflection of rhythm.While difference features ΔMFCC & ΔΔMFCC are used as characteristic parameters and Gaussian Mixture Mode(lGMM) is used as a trained model,the dialect can be identified through calculating the likelihood probability of the test samples.Changsha dialect,Shaoyang dialect,Hengyang dialect and Mandarin have been investigated with this method, and its effect has been compared with the effect using MFFC as characteristic parameters.Experiment results show that a more high recognition rate and better anti-noise performance can be obtained by GMM trained with difference feature.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期129-131,共3页 Computer Engineering and Applications
关键词 差分特征 高斯混合模型 方言识别 differential feature Gaussian Mixture Mode(lGMM) dialects identification
  • 相关文献

参考文献7

二级参考文献13

  • 1胡萍.从方言视角看湖南地域文化[J].湖南社会科学,2005(5):140-141. 被引量:10
  • 2Chen Tao, Huang Chao, Chang Eri, et al. Automatic Accent Identification Using Gaussian Mixtre Models. Microsoft Research China, 2002. 被引量:1
  • 3Fung P, Liu W K. Fast Accent Identification and Accented Speech Recognition. In Proc. ICASSP'99, 1999, 1: 221-224. 被引量:1
  • 4Bilmes J A. A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. International Computer Science Institute, 1998-04. 被引量:1
  • 5Rabiner L, Juang B H. Fundamentals of Speech Recognition. Prentice Hall Signal Processing Series, 1993. 被引量:1
  • 6Zissman M A.Comparison of four approaches to automatic language identification of telephone speech[J].IEEE Transactions on Speech and Audio Processing.1996,4(1):31-44. 被引量:1
  • 7Torres-Carrasquillo P A,Reynolds D A,Deller J R.Language identification Gaussian mixture model tokenization[C]//IEEE Int'l Conf Acoustics,Speech,and Signal Processing,Orlando,May 2002. 被引量:1
  • 8Torres-Carrasquillo P A.Language identification using Gaussian Mixture Models[D].Michigan State University,2002. 被引量:1
  • 9Tsai Wuei-he,Chang Wen-whei.Discrimination training of Guassian mixture bigram models with application to chinese dialect identification[J].Speech Communication,2002. 被引量:1
  • 10KUMPF K, KING R W. Automatic accent classification of foreign accented Australian English speech[C]// Proceedings of 4th International Conference on Spoken Language Processing. [S.l.]:IEEE Press,1996:1 140-1 143. 被引量:1

共引文献8

同被引文献41

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部