期刊文献+

基于GMM符号化和置信判别的汉语方言自动辨识研究 被引量:3

A Study about Chinese Dialect Identification Based on GMM Tokenization & Confidence Measure
下载PDF
导出
摘要 近年来汉语方言自动辨识研究有了初步进展,但由于缺乏带有语音标注的方言音库,性能优越的并行音素识别-语言模型(PPRLM)方法尚未得到研究和运用。本文借助高斯混合模型(GMM)符号化器把PPRLM的思想方法引入到汉语方言辨识中,并通过融合置信判别使系统能够用于开集辨识。仿真实验表明,本文方法具有很高的稳定性和可靠性,综合性能较为优越。 Lately the study of Chinese dialect identification (CDI) shows some progress. Yet the excellent method-parallel phone recognizers followed by language modeling(PPRLM)-has not be study in CDI field due to the lack of dialect corpus with annotation. In this paper, we study CDI using a method like PPRLM by virtue of GMM tokenizer, further we study the combination of a confidence measure to use the method in open-set task. Simulation results show that this CDI method is an excellent method with high stability and reliability.
出处 《计算机科学》 CSCD 北大核心 2006年第11期210-211,236,共3页 Computer Science
基金 国家社会科学基金重点项目(01AYY004) 江苏省社会科学基金项目(06J5BYY006) 江苏省"十五"社科基金项目(K3-013) 徐州师范大学人文社会科学基金项目(06XWB28)
关键词 汉语方言自动辨识 PPRLM方法 GMM符号化 置信判别 Chinese dialect identification, PPRLM method,GMM tokenization, Confidence measure
  • 相关文献

参考文献13

  • 1Tsai Wuei-He, Chang Wen-Whe. Discrimination Training of Guassian Mixture Bigram Models with Application to Chinese Dialect Identification[J] . Speech Communication 2002,36 : 317-326 被引量:1
  • 2Lim Boon Pang,Li Haizhou,Ma Bin. Using Local & Global Phonotactic Features in Chinese Dialect Identification [C]. In: Proc.of ICASSP'05,2005,1 : 577 -580 被引量:1
  • 3Muthusamy Y K,Barnard E,Cole R A. Reviewing automatic language identification [C]. IEEE Signal Processing Mag, 1994, 11(4):33-3 被引量:1
  • 4Zissman M A. Comparison of Four Approaches to Automatic Language Identification of Telephone Speech [C]. IEEE Trans.Speech and Audio Pro, 1996,4(1):31-34 被引量:1
  • 5Torres-Carrasquillo P A, Reynolds D A, Deller J R Jr. Language identification using Gaussian mixture model tokenization [C]. In:Proc. of ICASSP 2002,12002 : 757- 760 被引量:1
  • 6Laird N M, Lange N, Stram D. Maximum Likelihood Computations with Repeated Measures: Applications of the EM algorithm[J]. Journal of the American Statistical Association, 1987,82:97-105 被引量:1
  • 7Jelinek F. Statistical Methords for Speech Recognition [M]. Cambridge, Massachusetts,MIT Press,1999 被引量:1
  • 8Biederman D C, Ososanya E. Capacity of several neural networks with respect to digital adder and multiplier System Theory [C]. In: Proc. of the Twenty-Seventh Southeastern Symposium on Neural Network, 1995. 305-308 被引量:1
  • 9赵力.语音信号处理[M].北京:机械工业出版社,2001 被引量:1
  • 10Gleason T P, Zissman M A. Composite background models and score standardization for language identification system [C]. ICASSP, 2001 (1) : 529 -532 被引量:1

共引文献2

同被引文献37

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部