期刊文献+

一种新的基于自组织映射的流形学习算法 被引量:2

A New Manifold Learning Algorithm Based on SOM
下载PDF
导出
摘要 针对自组织映射(Self-Organizing Map,SOM)算法在进行流形学习时容易陷入局部极值和产生"拓扑缺陷"问题的原因,提出了一种新的基于SOM的流形学习算法:TO-SOM(TrainingOrderly-SOM).根据流形的局部欧氏性,TO-SOM算法从一个局部线性或近似线性的数据子集出发,按照数据的内在流形结构对其进行有序训练,可以避免局部极值、克服"拓扑缺陷".根据SOM算法的鲁棒性,TO-SOM算法在成功学习数据内在流形结构的同时,对邻域大小参数和噪声也不像ISOMAP和LLE等现有流形学习算法那样敏感,从而更容易得到实际应用. SOM (Self-Organizing Map) can be applied to manifold learning due to its topology preservation property; however, the iterative optimization used by SOM tends to get stuck in local minima and yield the topological defect problem, especially for data sets lying on low-dimensional nonlinear manifolds embedded in a high-dimensional space. To overcome this problem, a new manifold learning algorithm based on SOM, i.e. TO-SOM (Training Orderly-SOM), was presented in this paper. Based on the locally Euclidean nature of the manifold, TO-SOM trains the data set orderly according to its intrinsic manifold structure, starting from a small neighborhood in which the data points lie on or close to a locally linear patch, and selects the BMU (Best-Matching Unit) in the same way, by which TO- SOM can guide the map onto the manifold surface and overcome the topological defect problem. Additionally, based on the robustness of SOM, TO-SOM can learn the intrinsic manifold structure of the data set more robustly than the traditional manifold learning algorithms such as ISOMAP and LLE, that is, TO-SOM can be less sensitive to the neighborhood size and the noise, which is verified by experimental results finally.
作者 万春红 邵超
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期101-105,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(60774041) 河南省基础与前沿技术研究项目(082300410110) 河南省科技攻关项目(072102210001)
关键词 流形学习 自组织映射 拓扑缺陷 鲁棒性 邻域大小 manifold learning self-organizing map ( SO M ) topological defect robustness neighborhood size
  • 相关文献

参考文献13

  • 1Seung H S, Lee D D. Manifold Ways of Perception[J]. Science, 2000, 290(5500): 2268-2269. 被引量:1
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3Tenenbaum J B, de Silva V, Langford J C. A Global Geo-metric Framework for Nonlinear Dimensionality Reduction [J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 4Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290 (5500) : 2323 - 2326. 被引量:1
  • 5Balasubramanian M, Shwartz E L, Tenenbaum J B, et al. The ISOMAP Algorithm and Topological Stability[J]. Science, 2002, 295(5552): 7. 被引量:1
  • 6邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 7詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537. 被引量:24
  • 8Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps[J~. Biological Cybernetics, 1982, 43(1): 59-69. 被引量:1
  • 9Tenenbaum J B. Mapping A Manifold of Perceptual Observations[C] //Proc. of the llth Annual Conf. on Neural Information Processing Systems. Cambridge: MIT, 1997: 682 - 688. 被引量:1
  • 10Simila T. Self-Organizing Map Learning Nonlinearly Embedded Manifolds[J]. Information Visualization, 2005, 4 (1). 22-31. 被引量:1

二级参考文献33

  • 1Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269. 被引量:1
  • 2Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596. 被引量:1
  • 3.[EB/OL].http://www.cse.msu.edu/~lawhiu/manifold/,. 被引量:1
  • 4Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323. 被引量:1
  • 5Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000290(5500):2323-2326. 被引量:1
  • 6Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003,15(6):1373-1396. 被引量:1
  • 7Min WL, Lu L, He XF. Locality pursuit embedding. Pattern Recognition, 2004,37(4):781-788. 被引量:1
  • 8Zhang ZY, Zha HY. Principal manifolds and nonlinear dimensionalty reduction via tangent space alignment. SIAM Journal of Scientific Computing. 2004,26(1):313-338. 被引量:1
  • 9Kambhatla N, Leen TK. Dimension reduction by local principal component analysis. Neural Computation, 1997,9(7): 1493-1516. 被引量:1
  • 10Pelleg D, Moore A. X-means: Extending K-means with efficient estimation of the number of clusters.In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 727-734. 被引量:1

共引文献61

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部