期刊文献+

一种基于闭项集的无冗余关联规则挖掘方法 被引量:2

Mining Non-Redundant Association Rules Based on Closed Itemsets
下载PDF
导出
摘要 针对关联规则挖掘中存在的规则数量过多,难于理解和应用的问题,提出了一种基于闭项集的无冗余关联规则挖掘算法.首先,给出了无冗余关联规则的定义,并基于规则信任度的概念说明了该定义的合理性;其次,在生成子、闭项集和无冗余关联规则的基础上,给出了无冗余最小-最大精确规则基和无冗余最小-最大近似规则基的定义,并讨论了它们的剪枝策略.最后,讨论了生成子的性质及连接策略,并在包含索引的基础上,给出了一种宽度优先的无冗余关联规则挖掘算法.实验结果表明,本文提出的算法不仅可以发现规模较小的无冗余关联规则,提高了挖掘结果的可理解性,而且具有较高的挖掘效率. Association rule mining often produces several tens of thousands of association rules, which causes the problem of understanding and applying the mining results. To solve this problem, an algorithm for mining non-redundant association rules based on closed itemset is proposed. Firstly, the concept of non-redundant association rule based on closed itemset is proposed, and the rationality of the concept is explained based on conviction. Then, based on generator, closed itemset and non-redundant association rule, the definitions of non-redundant min-max precise rule basis and non-redundant minmax approximate rule basis are proposed, and the corresponding pruning strategies are discussed. Finally, the characteristics and connection strategies of generator are presented, and based on subsume index, a breadth-first algorithm for mining non-redundant association rule is proposed. Experimental results show that the non-redundant rules with smaller sizes can be discovered. Thus, the understandability of mining result is improved. Furthermore, the proposed algorithm is also efficient.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期91-96,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 北京市市属高等学校人才强教计划项目 北方工业大学青年重点研究基金项目资助 北方工业大学博士科研启动基金项目资助
关键词 数据挖掘 无冗余关联规则 生成子 闭项集 包含索引 data mining non-redundant association rule generator closed itemset subsume index
  • 相关文献

参考文献12

  • 1Ceglar A, Roddick J F. Association Mining[J]. ACM Computing Surveys, 2006,38 (2) : 1 - 42. 被引量:1
  • 2Lee Y C, Hong T P, Lin W Y. Mining Association Rules with Multiple Minimum Supports Using Maximum Constraints[J]. International Journal of Approximate Reasoning, 2005,40(1 - 2) : 44 - 54. 被引量:1
  • 3Yang L. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates [J]. IEEE Transaction on Knowledge and Data Engineering, 2005,17(1) :60- 70. 被引量:1
  • 4阮备军,朱扬勇.基于商品分类信息的关联规则聚类[J].计算机研究与发展,2004,41(2):352-360. 被引量:17
  • 5陈晓云,胡运发.一种基于兴趣度的大型数据库关联规则挖掘方法[J].模式识别与人工智能,2003,16(4):494-499. 被引量:4
  • 6Pasquier N, Bastide Y, Taouil R, et al. Discovering Frequent Closed Itemsets for Association Rules[ C]//Proceedings of the 7th International Conference Database Theory. London: Springer, 1999: 398-416. 被引量:1
  • 7Brin S, Motwani R, Ullman J D, et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data[ C] J/Proceedings of 1997 ACM SIGMOD International Conference on Management of Data. Tucson: USA, ACM, 1997:255 - 264. 被引量:1
  • 8Song W, Yang B R, Xu Z Y. Index-Close Miner: An Improved Algorithm for Mining Frequent Closed hemset[J]. Intelligent Data Analysis, 2008,12(4) : 321 - 338. 被引量:1
  • 9Song W, Yang B R, Xu Z Y. Index-MaxMiner: A New Maximal Frequent Itemset Mining Algorithm[J]. International Journal on Artificial Intelligence Tools, 2005, 17 (2) :303 - 320. 被引量:1
  • 10Jorge A, Azevedo P J. An Experiment with Association Rules and Classification: Post-Bagging and Conviction[C] /// Proceedings of the 8th International Conference on Discover Science. Singapore: Springer, 2005: 137- 149. 被引量:1

二级参考文献23

  • 1E G Hetzler, W M Harris, S Harvre et al. Visualizing the full spectrum of document relationships. In: Proc of the 5th Int'l Society for Knowledge Organization Conference. Würzburg: Ergon, 1998. 168~175 被引量:1
  • 2P C Wong, P Whitney, J Thomas. Visualizing association rules for text mining. In: Proc of IEEE Symposium on Information Visualization(INFOVIS'99). San Francisco: IEEE Computer Society, 1999. 120~123 被引量:1
  • 3M Hao, M Hsu, U Dayal et al. Market basket analysis visualization on a spherical surface. HP Labs, Technical Report: HPL-2001-3, 2001 被引量:1
  • 4H Toivonen, M Klemettinen, P Ronkainen et al. Pruning and grouping discovered association rules. The ECML-95 Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, Heraklion, 1995 被引量:1
  • 5G K Gupta, A Strehl, J Ghosh. Distance based clustering of association rules. In: Proc of ANNIE, St. Louis, Missouri: ASME Press, 1999. 759~764 被引量:1
  • 6M Ankerst, M Breunig, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: Proc of 1999 ACM-SIGMOD Int'l Conf Management of Data (SIGMOD'99). Philadephia: ACM Press, 1999. 49~60 被引量:1
  • 7J Han, Y Fu. Discovery of multiple level association rules from large databases. In: Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 420~431 被引量:1
  • 8R Srikant, R Agrawal. Mining generalized association rules.In:Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 407~419 被引量:1
  • 9A Savasere, E Omiecinski, S Navathe. Mining for strong negative associations in a large database of customer transactions. In: Proc of the 14th Int'l Conf on Data Engineering. Orlando: IEEE Computer Society, 494~502 被引量:1
  • 10B Lent, A N Swami, J Widom. Clustering association rules. In: Proc of the 13th Int'l Conf on Data Engineering. Birmingham: IEEE Computer Society, 1997. 220~231 被引量:1

共引文献19

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部