期刊文献+

关联规则挖掘的矩阵算法 被引量:33

An Association Mining Algorithm Based on Matrix
下载PDF
导出
摘要 关联挖掘算法中的Apriori算法提供了一种根据查找频繁项集来发现数据集中的关联规则的方法,这种算法思路简单易于实现;但在由低次频繁项集生成高次频繁项集时需反复查找数据库,在效率上存在一定的欠缺,在寻找高次频繁项集时尤为明显。文章提出了一种新的关联规则挖掘算法:矩阵算法。同Apriori算法相比较,该算法能直接查找高次频繁项集,可以有效地屏蔽Apriori算法性能瓶颈。试验结果表明,当频繁项级较高时该算法比Apriori具有更高的执行效率和性能,并具有良好的可行性。 Apriori algorithm can find out the associations of the data by finding the frequent itemsets by degrees, But it has the performance bottleneck when searching for the high level frequent itemsets. A new algorithm that can directly find the high level frequent itemsets is proposed in this paper. This algorithm can effectively resolve the bottleneck of Apriori. The result of the experiment shows that this algorithm can achieve better performance than Apriori and is more feasible especially when the degree of the frequent itemset is high.
出处 《计算机工程》 CAS CSCD 北大核心 2006年第2期45-47,共3页 Computer Engineering
基金 高等学校博士学科点专项科研基金资助项目(20030145017)
关键词 关联挖掘 APRIORI算法 频繁项集 矩阵算法 Association mining Apriori algorithm Frequent itemset Matrix algorithm
  • 相关文献

参考文献7

  • 1Agarwal R, Imielinski T, Swami A. Mining Associaiton Rules Between Sots of Items in Large Databttscs [A]. In: Proceeding of 1993 SIGMOD International Conterence on Management of Data [C].New York: ACM Press, 1993:207-216. 被引量:1
  • 2Park J S, Chen M S, Yu P S. Using a Hash-based Method with Transaction Trimming for Mining Associations Rules[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, (9):813-825. 被引量:1
  • 3Agarwal R, Agarwal C. A Tree Projection Algorithm for Generation of Frequent Itemsets[J]. Journal of Parallel and Distributed Compuling,2001, (Special Issue on High Performance Data Mining): 1-23. 被引量:1
  • 4Han Jiawei, Pei Ham Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[A]. In: Proceeding of 2000 ACM SIGMOID International Conference on Management of Data [C]. New York:ACM Press, 2000: 1-12. 被引量:1
  • 5HanJiawei KamberM.Data Mining:Concepts and Techniques[M].北京:高等教育出版社,2001.. 被引量:3
  • 6Berry M, Linoff G. Data Mining Techniques[M]. John Wiler, 1997. 被引量:1
  • 7HandD MannilarH SmythP.数据挖掘原理[M].北京:机械工业出版社,2003.. 被引量:27

共引文献28

同被引文献198

引证文献33

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部