期刊文献+

信息检索相关术语 被引量:3

Some Information Retrieval Terms
下载PDF
导出
摘要 信息检索技术是计算机技术和传统图书情报技术相结合而产生的新技术,在互联网高速发展的今天有着重要的应用。本文介绍了信息检索的发展历史及其相关术语,包括信息检索、搜索引擎、信息提取、信息过滤以及两个常用的信息检索系统性能评价指标:准确率和召回率。 Information retrieval is a new technology which combined computer technology with traditional document and information technology. With the rapid development of Internet, information retrieval has more and more important application today. The origin and development of information retrieval (IR) are introduced in this paper. Some terms that related to IR are explained in details, including Information Retrieval, Search Engine, Information Extraction, Information Filtering and two evaluation indices: Precision and Recall.
作者 邵艳秋
机构地区 北京城市学院
出处 《术语标准化与信息技术》 2009年第4期9-11,43,共4页 Terminology Standardization & Information Technology
关键词 信息检索 搜索引擎 信息提取 信息过滤 准确率 召回率 information retrieval search engine information extraction information filtering precision recall
  • 相关文献

参考文献2

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415. 被引量:1
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247. 被引量:1
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999. 被引量:1
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381. 被引量:1
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72. 被引量:1
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000. 被引量:1
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167. 被引量:1
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52. 被引量:1
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212. 被引量:1
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295. 被引量:1

共引文献394

同被引文献28

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部