期刊文献+

小生境共享克隆选择算法及其在TSP中的应用

Colonel selection algorithm based niche sharing and its application in TSP
下载PDF
导出
摘要 克隆选择算法(简写为CSA)是基于生物免疫学中的克隆选择原理而提出的一种寻优技术,此算法具有收敛速度快,局部搜索能力强的优点;但也有易陷入局部收敛的不足。小生境是生物学中物体生存的一种组织结构,基于这种组织结构产生了小生境共享思想,即对包含相似个体较多的物种,抑制此物种中个体的生存机会,从而给稀有物种以生存机会;现借鉴小生境共享思想提出了小生境共享克隆选择算法(简写为NSCSA),理论分析和仿真实验均表明NSC-SA算法通过提高迭代种群个体多样性,全局搜索性能得到了较大提高。 Colonel selection algorithm (CSA) is a search technology that was proposed based on biology immune clonal selection principle. It has the characteristics that its convergence is fast and local search capabilities is strong. But it also easily go into local convergence. Niche is a organizational structure that species survive by on biology. Niche sharing been proposed based on this structure. That is to cut down survival opportunity of the individual in the species that contains a relatively large number of similar individual, thus to heighten Rare species' survival chance. The paper inventes niche colonel selection algorithm(NSCSA) by drawing niche sharing principle. The theoretical analysis and simulation experiment show that NCSA algorithm improves its overall search performance by increasint population diversity.
出处 《信息技术》 2009年第11期93-96,共4页 Information Technology
基金 山东省科技攻关项目(2009GG10001008)
关键词 克隆选择算法 小生境共享技术 个体多样性 colonel selection algorithm niche sharing technology population diversity
  • 相关文献

参考文献7

  • 1Bernet FM. "Self-recognition" in colonial marie forms and flowering plants in relation to the evolution of immunity[ J]. Nature, 1971,232 (5308) :230 - 235. 被引量:1
  • 2Leandro Nunes de Castro, Fernando Jose Von Zubenmm. Artificial Immune Systems: PartⅠ-Basic Theory and Applications[D]. 1999(1):76-85. 被引量:1
  • 3Goldbberg D E, Rechardson J. Genetic Algorithms with Sharing for Multimodal Function Optimization [ C ]. Genetic Algorithms and Their Applications: Proceeding of the Second International Conference on Genetic Algorithms, 1987:41 - 49. 被引量:1
  • 4阎岭,蒋静坪.进化学习策略收敛性和逃逸能力的研究[J].自动化学报,2005,31(6):873-880. 被引量:16
  • 5崔逊学,李淼,方廷健.基于免疫原理的多目标进化算法群体多样性研究[J].模式识别与人工智能,2001,14(3):291-296. 被引量:21
  • 6郑金华著..多目标进化算法及其应用[M].北京:科学出版社,2007:276.
  • 7Jiawei Hart,Michelin Kamber.数据挖掘概念与技术[M].范明,孟小峰,译.机械工业出版社,2008. 被引量:1

二级参考文献3

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部