期刊文献+

遗传算法中两种学习机制的混合应用 被引量:7

Mixed application of two learning mechanisms in genetic algorithm
下载PDF
导出
摘要 在遗传算法中引入个体学习机制能够提高算法的性能,避免算法收敛过慢或陷入局部最优。常用的个体学习机制有两种,即拉马克学习与鲍德温学习,通过分析比较了两种学习机制在遗传算法中的性能差异,指出了它们各自的优势与不足。为进一步提高算法性能,基于"学习潜能"的新概念及利用鲍德温学习挖掘个体学习潜能的方法,将两种学习机制有机结合在一起,使学习的优势得到充分发挥,使其不足得到有效抑制。数值试验结果表明,包含两种学习机制的新算法取得了很好的效果。 For accelerating the algorithm convergence and avoiding the local optimization, an individual learning mechanism is often applied to generic algorithm to improve algorithm performance. The usual individual learning mechanism includes two sorts: Lamarckian learning and Baldwinina learning. The advantages and disadvantages of both mechanisms are indicated according to their difference performance in the generic algorithm. Additionally, based on a novel concept, named learning potentiality, and the method of digging individual learning potentiality by Baldwinina learning, the Lamarckian learning and Baldwinina learning are appropriately integrated for better algorithm performance so that the advantages of learning could be sufficiently utilized and dis advantages could be effectively forbidden. Numerical experimental results indicate the excellent effectivity of the integrated algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第8期1985-1989,共5页 Systems Engineering and Electronics
基金 教育部新世纪优秀人才支持计划(NCET-04-0325)资助课题
关键词 计算机工程 遗传算法 个体学习机制 个体学习潜能 拉马克学习 鲍德温学习 computer engineering genetic algorithm individual learning mechanism individual learning potentiality Lamarckian learning Baldwinina learning
  • 相关文献

参考文献11

  • 1沈浩,王昕.改进遗传单纯形混合算法在光纤对接中的应用[J].光电工程,2006,33(10):67-71. 被引量:6
  • 2高阳,江资斌.用混合遗传算法求解虚拟企业生产计划[J].控制与决策,2007,22(8):931-934. 被引量:13
  • 3Whitley D, Gordon V S, Mathias K. Lamarckian evolution,the Baldwin effect and function optinaization[M]. Parallel Problem Solving from Nature - PPSN III,. Springer-Verlag, 1994:6- 15. 被引量:1
  • 4焦李成,公茂果,邓颖敏,等.拉马克进化、鲍德温效应与自然计算[C]//中国人工智能学会第11届全国学术年会论文集.北京:北京邮电大学出版社,2005:54-62. 被引量:1
  • 5Hinton G E, Nowlan S J. How learning can guide evolution[J]. Complex Systems, 1987, 1 (3) : 495 - 502. 被引量:1
  • 6Ku K W C, Mak M W. Exploring the effects of Lamarckian and Baldwinian learning in evolving recurrent neural networks[C]// Proc. of the IEEE International Conference on Evolutionary Computation, 1997:617 - 621. 被引量:1
  • 7Ku K W C. Enhance the Baldwin effect by strengthening the cor relation between genetic operators and learning methods[C]// Proc. of the IEEE Congress on Evolutionary Computation, 2006:3302 - 3308. 被引量:1
  • 8阎岭,蒋静坪.进化学习策略收敛性和逃逸能力的研究[J].自动化学报,2005,31(6):873-880. 被引量:16
  • 9方宗熙著..拉马克学说[M].北京:科学出版社,1955:72.
  • 10Baldwin J M. A new factor in evolution[J]. American Naturalist, 1896, 30(3): 441-451. 被引量:1

二级参考文献31

  • 1苑立波.光源与纤端光场[J].光通信技术,1994,18(1):54-56. 被引量:40
  • 2潘正君 康立山 陈毓屏.演化计算[M].北京:清华大学出版社,2000.. 被引量:41
  • 3Stephen SMITH.The simplex method and evolutionary algorithms[A].IEEE World Congress on Computational Intelligence[C].Anchorage,AK:IEEE,1998.799-804. 被引量:1
  • 4M.MIZUKAMI,M.HIRANO,K.SHINJO.Simultaneous Alignment of Multiple Optical Axes in a Multistage Optical System Using Hamiltonian Algorithm[J].Opt.Eng,2001,40(3):448-454. 被引量:1
  • 5L.A.WANG,C.D.SU.Tolerance Analysis of Aligning an Astigmatic Laser Diode with a Single-Mode Optical Fiber[J].Lightwave Technology,1996,14(12):2757-2762. 被引量:1
  • 6Rong ZHANG,Frank G.SHI.A new algorithm for fiber-optic alignment automation[J].IEEE Tran.Adv.Packag,2004,27(1):173-178. 被引量:1
  • 7Martinez M T,Fouletier P,Park K H,et al.Virtual enterprise-Organization,evolution and control[J].Int J Production Economics,2001,74(1-3):225-238. 被引量:1
  • 8Rajiv Kishore,Ephraim R McLean.The next generation enterprise a CIO perspective on the vision,its impacts,and implementation challenges[J].Information Systems Frontiers,2002,4(1):121-138. 被引量:1
  • 9David Walters.Performance planning and control in virtual business structures[J].Production Planning and Control,2005,16(2):226-239. 被引量:1
  • 10Wu N Q,Sun J.Grouping the activities in virtual enterprise paradigm[J].Production Planning and Control,2002,13(4):407-415. 被引量:1

共引文献38

同被引文献69

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部