期刊文献+

在原始空间用Rosenbrock算法训练线性支持向量机 被引量:2

Training linear support vector machine by Rosenbrock algorithm in the primal space
原文传递
导出
摘要 为了加快并行下降方法(CD)用于线性支持向量机(SVM)时的最终收敛速度,将Rosenbrock算法(R)用于线性SVM.在内循环,R通过解一个单变量子问题来更新w的一个分量,并同时固定其他分量不变;在外循环,采用Gram-schmidt过程构建新的搜索方向.实验结果表明,与CD相比,R加快了最终的收敛,在分类中能更快地获得更高的测试精度. To improve the speed of final convergence of coordinate descent method (CD) when it is applied to linear support vector machine (SVM), Rosenbrock algorithm (R) is applied to linear SVM. In inter iterations, R updates one component of w by solving a one-variable sub-problem while fixing other components. In outer iterations, the new search direction is constructed by the Gram-schmidt procedure. Experimental results show that, compared with CD, R aceerlates final convergence and achieves higher testing accuracy more auicklv in classification
出处 《控制与决策》 EI CSCD 北大核心 2009年第12期1895-1898,共4页 Control and Decision
基金 国家自然科学基金项目(60574075 60705004)
关键词 支持向量机 模式识别 分类 Rosenbrock算法 并行下降 Support vector machine Pattern recognition Classification Rosenbrock algorithm Coordinate descent
  • 相关文献

参考文献8

  • 1Vapnik V. Satistical learning theory[M]. New York: Springer Verlag, 1995. 被引量:1
  • 2Mangasarian O L, Wild E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74. 被引量:1
  • 3Chapelle O, Sindhwani V, Keerthi S S. Optimization techniques for semi-supervised support vector machines [J]. J of Machine Learning Research, 2008, 9(1): 203- 233. 被引量:1
  • 4Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification [J]. Computational Optimization and Applications, 2001, 22(1):5-21. 被引量:1
  • 5Chapelle O. Training a support vector machine in the primal[J]. Neural Computation, 2007, 19 (5): 1155- 1178. 被引量:1
  • 6Chang K W, Hsieh C J, I.in C J. Coordinate descent method for large-scale L2-loss linear support vector machines[J]. J of Machine Learning Research, 2008, 9 (4) : 1369-1398. 被引量:1
  • 7Bazaraa M S, Shetty C. Nonlinear programming: Theory and algorithms[M]. New York: Wiley, 1979. 被引量:1
  • 8袁亚湘著..非线性规划数值方法[M].上海:上海科学技术出版社,1993:267.

同被引文献20

  • 1王玲,薄列峰,刘芳,焦李成.稀疏隐空间支持向量机[J].西安电子科技大学学报,2006,33(6):896-901. 被引量:8
  • 2陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5. 被引量:21
  • 3甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 4Liang Jinjin, Wu De. A new smooth support vector machine [C] //Lecture Notes in Computer Sciences, 2010: 266-272. 被引量:1
  • 5Guo Ning, Chen Xiankai, Ma Yingdong, et al. Non-parametric least square support vector machine [C] // International Con- [erence on Natural Computation, 2012: 93-96. 被引量:1
  • 6Pijushl Samui, Tim Lansivaara, Madhav R Bhatt. Least square support vector machine applied to slope reliability analysis [J]. Geotechnical and Geological Engineering, 2013, 31 ( 4 ): 1329-1334. 被引量:1
  • 7Xia Xiaolei, Jiao Weidong, Li Kang, et al. A novel sparse least squares support vector machines [C] //5th International Con- ference on Biomedical Engineering and Informatics, 2012. 被引量:1
  • 8Li Yang, Tang Wanmei, Li Mingyong. A least squares support vector machine sparseness algorithm [J]. Journal of Conver- gence Information Technology, 2012, 7 (13) :240-248. 被引量:1
  • 9Oliver C. Training a support vector machine in the primal [J]. Neural Computation, 2007, 19 (5): 1155-1178. 被引量:1
  • 10Moore G. Model selection for primal SVM [J]. MachineLearning, 2011, 85 (1-2): 175-208. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部