期刊文献+

基于遗传算法的GMDH网络模型及其应用 被引量:4

Genetic Algorithm Based GMDH Network Model and Its Application
下载PDF
导出
摘要 传统的数据处理群方法(Group method of data handling,GMDH)在结构上具有自组织和全局选优的特性,非常适合进行非线性数据的拟合。但由于在传统GMDH网络建模是用最小二乘法来辨识参数,常常使得模型预测效果不理想。遗传算法是一种有效的搜索和优化方法,它具有自适应搜索、渐进式寻优、并行式搜索、通用性强等特点,论文将遗传算法引入GMDH网络,用遗传算法辨识部分描述式的系数,建立了基于遗传算法的GMDH网络模型。并将该模型应用于一组实测时间序列的预测研究,计算机仿真结果表明,模型预测效果令人满意。 Traditional GMDH network has self-organization and overall selection features structurally, thus it is very suitable for the forecasting of nonlinear data. Since traditional GMDH network modeling uses least square method to identify parameters, model prediction results are unsatisfactory. The genetic algorithm is an effective searching and optimized method with the characteristics of adaptive search, gradual optimization, parallel search, and strong general features. The genetic algorithm is introduced into GMDH network to identify the coefficients of some descriptive formulae and a GMDH network model is established based on genetie algorithm. The model is used to forecast a group of measured time series. Simulation results show that the predicting result of the model is satisfactory.
作者 陈洪 陈森发
出处 《数据采集与处理》 CSCD 北大核心 2009年第6期820-824,共5页 Journal of Data Acquisition and Processing
基金 教育部博士点基金(20060286005)资助项目 江苏省高校自然科学基金(07KJD580085)资助项目
关键词 GMDH网络 遗传算法 时间序列 预测 GMDH network genetic algorithm time series forecasting
  • 相关文献

参考文献11

二级参考文献40

共引文献83

同被引文献41

  • 1张旭,栾维新,蔡权德.高速铁路与航空运输竞争研究[J].大连理工大学学报(社会科学版),2011,32(1):42-46. 被引量:15
  • 2陈客松,何子述,韩春林.非均匀线天线阵优化布阵研究[J].电子学报,2006,34(12):2263-2267. 被引量:23
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4刘勇,康立山,陈毓屏.非数值并行算法(第二册)遗传算法[M].北京:科学出版社,2003. 被引量:3
  • 5Fishier E, Haimovich A, Blum R, et al. MIMO radar., an idea whose time has come[C]//Radar Conference 2004 Proceedings of the IEEE. Philadel- phia, Pennsylvania : IEEE, 2004 : 71-78. 被引量:1
  • 6Fishier E, Haimovich A, Blum R, et al. Perfor- mance of MIMO radar systems .. advantages of angu- lar diversity [C]//Conference Record of the Thirty- Eighth Asilomar Conference on Signals, System and Computers. Pacific Grove, California: Mission Re- search Corporation, 2004: 7-10. 被引量:1
  • 7Robey F C, Courts S, Weikle D, et al. MIMO radar theory and experimental results [C] // Conference Record of the Thirty-Eighth Asilomar Conference on Signals, System and Computers. Pacific Grove, California: Mission Research Corporation, 2004: 300-304. 被引量:1
  • 8Forsythe K W, Bliss D W, Fawcett G S. Multiple- input multiple-output (MIMO) conference record of the radar : performance issues [C]//38th Asilomar Conference on Signals, System and Computers. Pa- cific Grove, California: Mission Research Corpora- tion, 2004:310-315. 被引量:1
  • 9Bliss D W, Forsythe K W. Multiple-input multiple- output (MIMO) radar and imaging: degrees of free- dom and Resolution[C]//37th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA:[s.n. ],2003, 1: 54-59. 被引量:1
  • 10Wang Zhisong, Li Jian, Wu Renbiao. Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging [J]. IEEE Transactions on Medical Imaging, 2005, 24(10): 1308-1322. 被引量:1

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部