期刊文献+

基于抗混叠轮廓波变换系数分布模型的去噪算法研究 被引量:4

Novel denoising algorithm based on coefficient distribution model of non-aliasing contourlet transform
下载PDF
导出
摘要 针对轮廓波变换存在频谱混叠致使其难以获得理想的去噪效果这一问题,本文提出一种基于抗混叠轮廓波变换系数分类的混合模型图像降噪算法。该算法通过计算变换系数的尺度间相关性,将系数分为重要系数和非重要系数两类,并对二者分别采用广义非高斯二元变量分布与零均值高斯分布建模,在Bayes框架下对原始图像进行估计。实验研究结果表明,以Barbara图像为例,当噪声方差σ=30时,本文算法不仅峰值信噪比(PSNR)超过Contourlet-HMT模型去噪2.72dB,且主观视觉效果上亦均优后者,同时还具有较高的计算效率。 Frequency aliasing of contourlet transform poses difficulties for image denoising. To deal with this problem, a hybrid model based on the characteristics of non-aliasing contourlet transform (NACT) coefficients is proposed for image denoising in this paper. Coefficients of NACT are classified into two categories: important and non-important, in terms of their interscale correlations. Generalized non-Gaussian bivariant distribution and zero-mean local Gaussian distribution are used to model the important coefficients and non-important coefficients respectively, which are then incorporated into Bayesian framework for denoising. Experimental results show that, for Barbara image, the proposed algorithm is superior to contourlet denoising method based on hidden Markov tree model in terms of PSNR (2.72 dB with σ=30) and visual quality. In addition, much higher computational efficiency is also achieved.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2361-2365,共5页 Chinese Journal of Scientific Instrument
基金 重庆市自然科学基金(2009BB2188)资助
关键词 图像去噪 抗混叠轮廓波变换 系数分类 分布模型 image denoising non-aliasing contourlet transform coefficients classification distribution model
  • 相关文献

参考文献14

  • 1DO M N, VETTERLI M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[J]. IEEE Trans on Image Processing, 2002,11 (2): 146-158. 被引量:1
  • 2STEPHEN M, YANG L H. A wavelet tour of signal processing[M]. Beijing, China Machine Press, 2003. 被引量:1
  • 3CAND S E J, DONOHO D L. Continuous curvelet transform: Ⅰ. Resolution of the wavefront set[J]. Applied and Computational Harmonic Analysis, 2005,19(2): 162- 197. 被引量:1
  • 4DO M N, VETTERLI M. The contourlet transform: an efficient directional multi-resolution image representation [J]. IEEE Trans. on Image Processing, 2005,14(12):2091-2106. 被引量:1
  • 5BURT P J, ADELSON E H. The laplacian pyramid as a compact image code[J]. IEEE Trans. on Communication, 1983,31(4):532-540. 被引量:1
  • 6BAMBERGER R H, SMITH M J. A filter bank for the directional decomposition of images: Theory and design [J]. IEEE Trans. on Signal Processing, 1992,40(4):882- 893. 被引量:1
  • 7NGUYEN T T, ORAINTARA S. The multi-resolution direction filterbanks: theory, design, and applications[J]. IEEE Trans. on Signal Processing, 2005,53(10):3895- 3905. 被引量:1
  • 8POD D Y, DO M N. Directional multi-scale modeling of images using the contourlet transform[J]. IEEE Trans. on Image Processing, 2006,15(6):1610-1620. 被引量:1
  • 9练秋生,孔令富.非抽样轮廓波变换构造及其在图像去噪中的应用[J].仪器仪表学报,2006,27(4):331-335. 被引量:11
  • 10LU Y, DO M N, A new contourlet transform with sharp frequency localization[C]. IEEE International Conference on Image Processing, Atlanta, USA, 2006,2:1629-1632. 被引量:1

二级参考文献41

  • 1练秋生,孔令富.非抽样轮廓波变换构造及其在图像去噪中的应用[J].仪器仪表学报,2006,27(4):331-335. 被引量:11
  • 2付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 3[1]Joshi R J,Fischer T R.Comparison of generalized Gaussian and laplacian modeling in DCT image coding[J].IEEE Trans.on signal processing letters,1995,2(5):81-82. 被引量:1
  • 4[2]Do M N,Vetteli M.Wavelet based texture retrieval using generalized Gaussian density and Kullback leibler distance[J].IEEE Trans.on image processing,2002,11(2):146-158. 被引量:1
  • 5[3]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.on Pattern Recognit Machine Intell,1989,11(7):674-693. 被引量:1
  • 6[4]Walden A T,Hosken J W J.The nature of the nonGaussianity of primary reflection coefficients and its significance for deconvolution[A].The 47th meeting of the EAEG,Budapest,1985.1038-1066. 被引量:1
  • 7[5]Cao J,Murara N.A stable and robust ICA algorithm based on T-distribution and generalized Gaussian distribution on model[A].Neural Networks for Signal Processing[C].New York:IEEE Press,1999,283-292. 被引量:1
  • 8[6]Stacy E W.A generalization of gamma distribution[J].Ann Math Stat,1962,28(3):1187-1192. 被引量:1
  • 9[7]James H M,John B T.Detectors for discrete-time signals in non-Gaussian noise[J].IEEE Trans on information Theory,1972,18(2):241-250. 被引量:1
  • 10[8]Kamran S,Alberto L G.Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video[J].IEEE Trans on circuits and systems for video technology.1995,5 (1):52 -56. 被引量:1

共引文献77

同被引文献41

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部