期刊文献+

改进的基于PSE和Tustin变换的分数阶系统求解递推算法 被引量:4

Improved recursive algorithm for fractional-order system solution based on PSE and Tustin transform
下载PDF
导出
摘要 以分数阶算子近似方法的分析研究为基础,基于Tustin变换理论及其用于分数阶算子的离散生成函数公式特点,利用二项式幂函数的Maclaurin展开能够保证收敛的特性,考虑常用算法的局限性,提出了一种改进的基于幂级数展开和Tustin变换的分数阶运算方法,并应用于线性分数阶系统的求解,给出了递推算法的详细推导。算例仿真及其分析表明,该算法有效且具有良好的运算速度和精度。 As an important and foundational work of fractional-order control which is a new study field of control science and engineering, the solution method of fractional-order calculus (FOC) and fractional-order system (FOS) receives great attention. Based on the analysis of some aspects, such as the approximative algorithm of FOC, the Tustin transform theory and its generating function formula's character, the convergence guarantee of binomial power function by Maclaurin expanding, and the consideration of the limitation of conventional methods, an improved method is proposed to compute the numerical evalution of FOC using PSE and Tustin transform and is further applied to solving the linear FOS. The recursive algorithm is deduced in detail, its effectiveness and advantage are verified by some illustrative simulation examples.
作者 朱呈祥 邹云
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第11期2736-2741,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60474078)资助课题
关键词 分数阶微积分 分数阶系统 递推算法 幂级数展开 Tustin变换 fractional-order calculus fractional-order system recursive algorithm power series expansion Tustin transform
  • 相关文献

参考文献19

  • 1Podlubny I. Fractional differential equations[M] Acdemic Press, San Diego, 1999. 被引量:1
  • 2王振滨..分数阶线性系统及其应用[D].上海交通大学,2004:
  • 3Podlubny I. The Laplace transform method for linear differential equations of the fractional order[J]. Fractional Calculus and Applied Analysis, 1997 : 365 - 386. 被引量:1
  • 4Vinagre B M, Chen Y Q, Ivo Petras, Two direct Tustin discretization methods for fractional-order differentiator/integrator[J]. Journal of the Franklin Institute, 2003,340(5) :349 - 362. 被引量:1
  • 5Chen Y Q, Vinagre B M, Podlubny I. Using continued fraction expansion to discretize fractional order derivatives [EB/OL]. http:// www. ece. usu. edu/csois/people/yqchen/paper/04J05-ndcv2. pdf . 被引量:1
  • 6Chen Y Q, Vinagre B M, Podlubny I. A new discretization method for fractional order differentiators via continued fraction expansion[C]//Proc, of DETC, 2003 : 1 - 8. 被引量:1
  • 7Oustaloup A, Levron F, Nanot F, et al, Frequency band complex non integer differentiator: characterization and synthesis [J]. IEEE Trans. on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2000,47(1) :25 - 40. 被引量:1
  • 8Charef A, Sun H H, Tsao Y Y, et al. Fractal system as represented by singularity function[J]. IEEE Trans. on Automatic Control, 1992,37(9) :1465 - 1470. 被引量:1
  • 9Xue Dingyu, Zhao Chunna, Chen Yangquan. A modified approximation method of fractional order system[C]//Proc, of the IEEE International Conference on Mechatronics and Automation, 2006: 1043 - 1048. 被引量:1
  • 10赵春娜,薛定宇.一种分数阶线性系统求解方法[J].东北大学学报(自然科学版),2007,28(1):10-13. 被引量:7

二级参考文献62

共引文献73

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部