摘要
从分数演算基本的G-L定义出发,引出G-L数值算法中加权系数——G-L加权系数与广义二项式系数之间的关系,进而通过Γ函数来求解G-L加权系数.而后用加权系数的参数构建一个二维平面,使这些参数由整数域拓展到整个实数域,实现了分数演算中加权系数和对应二项式系数的推广.最后利用Matlab语言编程实现,为分数演算的数值计算提供方便、快捷的工具.
Start with the Grunwald-Letnikov definition (G-L definition) of the fractional calculus, the relationship between the weight coefficients of the G-L numerical algorithm and the generalized binomial coefficents is introduced. And then , the G-L weight coefficent is obtained by using the gamma function in Matlab. A two-dimensional plane of the G-L weight coefficient and a two-dimensional plane of the generalized binomial coefficient are presented in this paper. Finally , a method how to compute the weight coefficent is given in MATLAB, which is convenient to numerical approximate the fractioanl calculus.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期831-834,共4页
Journal of Sichuan University(Natural Science Edition)
关键词
分数微积分
G-L定义
Γ函数
广义二项式系数
MATLAB
fractional calculus, Grunwald-Letnikow,gamma function, generalized binomial coefficients, matlab