期刊文献+

考虑偏度风险和峰度风险的非线性期货套期保值模型 被引量:6

Nonlinear Futures Hedging Model Based on Skewness Risk and Kurtosis Risk
原文传递
导出
摘要 期货市场中,不仅存在方差风险,还存在偏度风险和峰度风险。但是现有的期货套期保值模型研究基本都是建立在方差风险基础上的,并没有考虑偏度风险和峰度风险对于套期保值的影响。针对现有研究的这一共同问题,本文以负指数效用函数为决策函数,提出了考虑偏度风险和峰度风险的非线性期货套期保值模型,并以原油的套期保值为例,讨论了偏度风险和峰度风险对于期货套期保值模型的影响。 There is skewness risk and kurtosis risk in the futures markets besides variance risk. However,the existing models for futures hedging are almost based on variance risk, which ignores the impact of the skewness risk and kurtosis risk in the hedging decision. In view of the common problem of existing studies, we take the negative exponential utility function as decision-making function and propose nonlinear futures hedging model based on skewness risk and kurtosis risk in this paper. Finally, we use the hedging of crude oil to illustrate the application of the model and discuss how skewness risk and kurtosis risk impact hedge ratio.
出处 《系统工程》 CSCD 北大核心 2009年第10期44-48,共5页 Systems Engineering
基金 教育部新世纪优秀人才支持计划项目(NECT06-0749) 国家自然科学基金资助项目(70801027) 教育部人文社会科学研究规划基金资助项目(07JA630048)
关键词 偏度风险 峰度风险 负指数效用函数 套期保值 Skewness Risk Kurtosis Risk Negative Exponential Utility Function Futures Hedging
  • 相关文献

参考文献19

二级参考文献56

  • 1黄长征.期货套期保值决策模型研究[J].数量经济技术经济研究,2004,21(7):96-102. 被引量:37
  • 2陈洁,袁象,赵世英.投资者对待损失的态度与套期保值策略间的关系[J].系统工程理论方法应用,2004,13(6):485-489. 被引量:1
  • 3李国荣,吴大为,余方平.基于差异系数σ/μ的期货套期保值优化策略[J].系统工程,2005,23(8):78-81. 被引量:4
  • 4张燮译.线性统计推断及其应用[M].北京:科学出版社,1987.. 被引量:1
  • 5[2]Donald L,Soojong K.Provisional liquidation of fut tures hedge programs[J].Energy Economics,2006(28):266-273. 被引量:1
  • 6[7]Chen S L,Shrestha K.On a mean generalized semivarian-ce appmrach to determining the hedge ratio[J].The Jour-nal of Futures Markets,2001,21(6):581-598. 被引量:1
  • 7[8]Jong D R,Veld C.Out-of-sample hedging effective ness of currency futures for alternative models and hedging strategious[J].The Journal of Futures Markets,1997,17(7):817-837. 被引量:1
  • 8[9]Won W K,Hyun J J.Offshore hedging strategy of Japan-based wheat traders under multiple sources of risk andhedging costs[J].Journal of International Money and Finance,2006(25):220-236. 被引量:1
  • 9Anderson R W and Danthine J P, 1983, Hedger Diversity in Futures Markets, The Economic Journal, 93: 370-389. 被引量:1
  • 10David Hirshleifer, 1988, Risk, Futures Pricing, and the Organization of Production in Commodity Markets, Journal of Political Economy, 96: 1206-1220. 被引量:1

共引文献55

同被引文献64

  • 1黄长征.期货套期保值决策模型研究[J].数量经济技术经济研究,2004,21(7):96-102. 被引量:37
  • 2王学民.关于样本均值的抽样分布能否作正态近似的探讨[J].统计研究,2005,22(7):75-78. 被引量:5
  • 3李国荣,吴大为,余方平.基于差异系数σ/μ的期货套期保值优化策略[J].系统工程,2005,23(8):78-81. 被引量:4
  • 4Johnson L. The theory of hedging and speculation in commodity futures [ J ]. The Review of Economic Studies, 1960,27 (3) : 139-151. 被引量:1
  • 5Shaffer D R, DeMaskey A. Currency hedging using the mean-Gini framework [ J ] . Review of Quantita- tive Finance and Accounting, 2005,25 (2) : 125-137. 被引量:1
  • 6Hung J- C, Chiu C- L, Lee M- C. Hedging with zero- value at risk hedge ratio [ J ]. Applied Financial Eco- nomics, 2006,16 (3) :259-269. 被引量:1
  • 7Mattos F, Garcia P, Nelson C. Relaxing standard hedging assumptions in the presence of downside risk [ J ]. The Quarterly Review of Economics and Finance, 2008,48( 1 ) :78-93. 被引量:1
  • 8Howard C T, D'Antonio L J. A risk-return measure of hedging effectiveness [ J ]. Journal of Financial and Quantitative Analysis, 1984,19 ( 1 ) : 101-112. 被引量:1
  • 9Chen S-S, Lee C F, Shrestha K. On a mean-general- ized semivariance approach to determining the hedge ratio [ J ] . Journal of Futures Markets, 2001,21 (6) : 581-598. 被引量:1
  • 10Lien D. Optimal futures heading:Quadratic versus exponential utility functions [ J ]. Journal of Futures Markets, 2007,28 (2) :208-211. 被引量:1

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部