期刊文献+

一类新的极值估计量

A New Class of Estimator for Extreme-Value Index
下载PDF
导出
摘要 提出了一类新的极值指数估计量,证明了该估计量的相合性以及渐近性. In this paper, a new class of estimator for the extreme value index is proposed, and the consistency and asymptotic property of this estimator are proved.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第11期15-18,共4页 Journal of Southwest University(Natural Science Edition)
基金 教育部重大项目(06JJD790026) 重庆市自然科学基金资助项目(CSCT 2005BB8098)
关键词 强弱相合性 强收敛速度 渐近正态性 weak and strong convergence strong convergence rate asymptotic normality
  • 相关文献

参考文献12

  • 1Hill B M. A Simple General Approach to Inference About the Tail of a Distribution [J]. Ann Statistics, 1975, 3(5): 1163 -- 1174. 被引量:1
  • 2Piekands J. Statistical Inference Using Extreme Order Statictics [J]. Ann Statist, 1975, 3(1) : 119 -- 131. 被引量:1
  • 3De Haan L, Resnick S I. A Simple Asymptotic Estimate for the Index of a Stable Distribution [J]. J Roy Statist Soc Ser B, 1980, 42(1): 83-87. 被引量:1
  • 4Hall P. On Some Simple Estimates of an Exponent of Regular Variation [J]. J Roy Statist Soc Ser B, 1982, 42(1): 37- 42. 被引量:1
  • 5Mason D M. Laws of Large Numbers for Sums of Extreme Values [J]. Ann Probab, 1982, 10(3) : 754 -- 764. 被引量:1
  • 6Davis R, Resniek S I. Tail Estimates Motivated by Extreme Value Theory [J]. Ann Statist, 1984, 12(4): 1467 - 1487. 被引量:1
  • 7Hall P, Welsh A H. Adaptive Estimate of Parameters of Regular Variation [J]. Ann Statist, 1985, 13(1): 331 -341. 被引量:1
  • 8John Segers. Generalized Pickands Estimators for the Extreme Value Index [J]. Statist Plann Inference, 2005, 128(2): 381 - 396. 被引量:1
  • 9Dekkers A L M, De Haan L. On the Estimation of the Extreme-Value Index and Large Quantile Estimation[J]. Ann Statist, 1989, 17(4) : 1795 - 1832. 被引量:1
  • 10彭作祥,S Nadarajah.The Pickands' Estimator of the Negative Extreme-value Index[J].北京大学学报(自然科学版),2001,37(1):12-19. 被引量:5

二级参考文献9

  • 1[1]Hill. A simple general approach to inference about the tail of a distribution [J]. Ann Statist, 1975, 3:1163 - 1174. 被引量:1
  • 2[2]Mason. Laws of large numbers for sums of extreme values [J]. Ann Probab, 1982, 10:754 - 764. 被引量:1
  • 3[3]Deheurelss, Haeuseler, Mason. Almost sure convergence of the Hill estimator [J]. Math Proc Cambridge Philos Soc, 1988, 104:371 - 381. 被引量:1
  • 4[4]Davis, Resnick. Tail estimators motivated by extreme - value theory [J]. Ann Statist, 1994, 12:1467 - 1487. 被引量:1
  • 5[5]Dekkers A L M, Einmah1 J H J, De Haan L. A moment estimator for the index of an extreme-value distribution [J] . Ann Statist, 1989, 4:1833 - 1855. 被引量:1
  • 6[6]Wellner. Limit theorems for the ratio of the empirical distribution function to the true distribution function [J]. Z Wahrsch Verw Gebiete, 1978, 45: 78- 88. 被引量:1
  • 7[7]Dekkers A L M, De Haan. On the estimation of the extreme-value index and large quantile estimation [J]. Ann Statist, 1989, 17: 1795 - 1832. 被引量:1
  • 8[8]Resnick S J. Extreme value, regular variation and point processes [ M ]. New York: Spinger-Verlag, 1987. 被引量:1
  • 9Cheng Shihong,Limit theorems in probability,1999年 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部