期刊文献+

摄动有限体积算法及其在两相流中应用 被引量:1

Perturbation Finite Volume Method and Application in Two-phase Flows
下载PDF
导出
摘要 采用一种全新的摄动有限体积(PFV)算法和水平集(Level Set)技术对液液两相系统中液滴坠落进行数值模拟,数值结果表明,PFV新算法具有节点少、精度高,效率高,编程方便等优点,能成功模拟液液两相流动,为两相流动数值模拟提供了一种新的途径. Droplets in liquid-liquid two-phase flow are simulated by a perturbation finite volume(PFV) method and Level Set technique.Numerical results show that the PFV scheme has advantages in fewer nodes,high accuracy and efficiency.It facilitates programming.PFV scheme successfully simulates liquid-liquid two-phase flows.
出处 《计算物理》 EI CSCD 北大核心 2009年第6期857-864,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(20490206)资助项目
关键词 摄动有限体积 两相流 液滴坠落 数值算法 perturbation finite volume two-phase flow falling droplet numerical algorithm
  • 相关文献

参考文献12

  • 1Chang Sinchung. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations [ J ] . J Comput Phys, 1995, 119 : 295 - 324. 被引量:1
  • 2Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis[J]. J Comput Phys, 2001, 169(2) : 556 - 593. 被引量:1
  • 3Xu K, Martinelli L, Jameson A. Gas-kinetic finite volume methods, flux-vector splitting and artificial diffusion[J]. J Comput Phys, 1995, 120: 48- 65. 被引量:1
  • 4高智.摄动有限差分方法研究进展[J].力学进展,2000,30(2):200-215. 被引量:18
  • 5高智.对流扩散方程的摄动有限体积(PFV)方法及讨论[C]//第十一届全国计算流体力学会议论文集,洛阳,2002:29-35. 被引量:1
  • 6高智,杨国伟.PERTURBATION FINITE VOLUME METHOD FOR CONVECTIVE-DIFFUSION INTEGRAL EQUATION[J].Acta Mechanica Sinica,2004,20(6):580-590. 被引量:5
  • 7Rallison J M, Acrivos A. A numerical study of the deformation and burst of a viscous drop in an extensional flow[ J]. J Fluid Mech, 1978, 89:191-200. 被引量:1
  • 8Hirt C W, Nichols B D. Volume of fluid(VOF) method for the dynamics of free boundaries[ J]. J Comput Phys, 1981,39:201 -225. 被引量:1
  • 9Osher S, Serbian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys, 1988, 79: 12-49. 被引量:1
  • 10Ghia U, Ghia K N, Shin C T. High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J Comput Phys, 1982, 48(3): 387- 411. 被引量:1

二级参考文献6

共引文献18

同被引文献28

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部