期刊文献+

用物理黏性构建高阶不振荡对流扩散差分格式

HIGHER-ORDER ACCURATE,NON-OSCILLATORY,THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY
下载PDF
导出
摘要 利用数值摄动算法,通过扩散格式数值摄动重构把对流扩散方程的2阶中心差分格式(2-CDS)重构为高精度高分辨率格式,解析分析和模型方程计算证实了新格式的高精度不振荡性质.新格式是把物理黏性使流动光滑化的扩散运动规律引入2-CDS中的结果.该法显然与构建高级离散格式的常见方法不同.证实:数值摄动重构中引入扩散运动规律的结果格式与引入对流运动规律(下游不影响上游的规律)的结果格式一致,说明对离散方程的数值摄动运算,在维持原格式结构形式不动的条件下,不仅能提高格式精度和稳健性,且可揭示对流离散运动规律与扩散离散运动规律之间的内在关联;同时证实,文中提出和使用的上、下游分裂方法是构建高精度不振荡离散格式的一个有效方法. Several higher-order accurate, non-oscillatory, three-nodes central difference schemes for the convective-diffusion equation are given by perturbationally reconstructing the diffusion scheme in the second- order accurate central difference scheme(2-CDS). Excellent properties of higher-order accurate and high resolution of the present new schemes (diffusion perturbation schemes, DPS) are verified by theoertical analyses and three numerical tests which include one-dimensional linear and non-linear and two-dimensional convective- diffusion equations. In all numerical tests, the 2-CDS oscillates and diverges on coarse grids, while part of DPS do not oscillates and can capture discontinuities with high resolution. The mean square root L2 errors of all DPS are greatly less than those of 2-CDS in all numerical tests. The DPS are the results of introducing diffusion-motion law(i.e, physical viscosity smoothing out space-distribution of diffusion quantities) into 2-CDS. The present method is obviously different from the well-known those of constructing high-order accurate and high resolution schemes. In addition, we prove that DPS are completely consistent with those schemes of introducing convection-motion law(i.e, law of that the downstream does not affect the upstream) into 2-CDS, to show that the perturbational operation to 2-CDS not only raises the scheme's accurate and stability but also reveals intrinsic relation between the convective discrete scheme and diffusion discrete scheme, and that the upstream-downstream splitting is a very useful method for reconstructing high-order accurate, high resolution CFD scheme without artificial viscosity or limiter.
作者 高智
出处 《力学学报》 EI CSCD 北大核心 2012年第3期505-512,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10872204)~~
关键词 计算流体力学 数值摄动算法 高精度不振荡差分格式 对流扩散方程 computational fluid dynamics, numerical perturbation algorithm, high-order accurate and non- oscillatory scheme, convection-diffusion equation
  • 相关文献

参考文献15

  • 1Chung TJ. Computational Fluid Dynamics (2nd edn). Cambridge: Cambridge University Press, 2010. 被引量:1
  • 2Laney CB. Computational Gasdynamics. Cambridge: Cambridge University Press, 1998. 被引量:1
  • 3Von Neuman J, Richtmyer RD. A method for numerical calculation of hydrodynamic shock. J Applied Phys, 1950, 21:232-257. 被引量:1
  • 4Jameson A, Schmidt W. Turkel E. Numerical solutions of Euler equations by finite volume methods using Runge- Kutta time-stepping schemes. AIAA 81-1259, 1981. 被引量:1
  • 5Godunov SK. A difference method for the numerical cal- culation of discontinuous solutions of hydrodynamic equa- tions. Math Sobrnik, 1959, 47:271-306. 被引量:1
  • 6Harten A. High resolution schemes for hyperbolic conser- vation laws. J Comput Phys, 1983, 49:357-393. 被引量:1
  • 7Harten A, Engquist B, Osher S, et al. Uniformly high or- der accurate essentially non-oscillatory schemes III. Jour Comput Phys, 1987, 71:231-303. 被引量:1
  • 8Liu XD, Osher S, Chan T. Weighted essentially non- oscillatory schemes. J Comput Phys, 1994, 115:200-212. 被引量:1
  • 9高智.对流扩散方程的高精度差分方法.见:北京计算流体力学讨论会文集(第6辑).中国科学院力学研究所,1994.1—23. 被引量:1
  • 10高智.对流扩散方程的摄动有限体积方法.见:第十一届全国计算流体力学会议论文集,洛阳,2002.38-45. 被引量:1

二级参考文献35

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部