期刊文献+

复杂背景下多目标彩色分割算法

Multi-objects colorful segmentation algorithm for complex background
下载PDF
导出
摘要 运动视频多目标分割中的背景建模对环境变化有较大的依赖性,直接运用背景差分法会产生不理想甚至是错误的分割。提出了一种基于Kalman滤波理论的改进码书背景建模算法。根据码书为每个像素建立一个彩色模型,用来区分前景和背景像素,并利用Kalman滤波器的时域递归低通滤波特性对码书背景更新模型进行了校正。实验结果表明,该算法可以有效地更新背景模型,抗干扰能力强,在复杂背景条件下可精确分割出运动目标并满足实时性要求。 The background modeling of multi-object segmentation of moving video relies much on the change of environment. Making use of the background subtraction directly may lead to unsatisfactory even wrong segmentation. An improved algorithm of the codebook background modeling based on Kalman filtering theory was proposed. According to the codebook, a colorful model for each pixel was built to distinguish the foreground and background pixels, and according to the characteristics of temporal recursive low passed of Kalman filtering, it was used to rectify the codebook background modeling. The experimental results show that the improved algorithm can update background model efficiently, has the strong antijamming ability and segregate the moving objects accurately to meet the real-time requirements.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3322-3325,共4页 journal of Computer Applications
基金 教育部新世纪人才支持计划 重庆市科技攻关项目(7818) 重庆市自然科学基金资助项目(2005BB2063) 重庆市教委科学技术项目(050509 060504 060517)
关键词 背景模型 彩色模型 码书 运动目标 background model colorful model codebook moving object
  • 相关文献

参考文献10

二级参考文献76

  • 1张恒.基于大数据背景下的计算机网络信息安全问题分析[J].明日,2017,0(42):0058-0058. 被引量:2
  • 2熊洪允 曾绍标 毛云英 编著.应川数学丛础[M].火沣:天津大学出版社,1996.190-220. 被引量:1
  • 3Moustakides G V. Correcting the instability due to finite precision of the fast Kalman identification algorithms. Signal Processing.1989, 18(1): 33 - 42. 被引量:1
  • 4Yaakov Bar-Shalom, Multitarget-multisensor tracking and fusion.1997 IEEE National Radar Conference, Syracuse, NY, 1997:180- 192. 被引量:1
  • 5Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066. 被引量:1
  • 6Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163. 被引量:1
  • 7Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181. 被引量:1
  • 8Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29. 被引量:1
  • 9Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252. 被引量:1
  • 10Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510. 被引量:1

共引文献304

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部