期刊文献+

公共突发事件应急统计中纵向缺失数据的处理方法研究 被引量:4

An Study on the Methods for Longitudinal Data with Missing Values for Emergency Statistic under Public Emergency
下载PDF
导出
摘要 缺失数据在公共突发事件的应急统计数据分析中是一个非常普遍的问题,针对公共突发事件应急统计数据的纵向数据集,提出用一种得分匹配法来进行缺失值的借补处理,并将其与另外三种缺失值处理方法进行比较,即构造各种不同缺失率的随机缺失数据集,分别运用得分匹配法、LVCF借补法、无条件均值抽取法和多重借补法四种不同的缺失值处理方法对每一种缺失率的数据集缺失值进行处理。统计分析结果表明,少数缺失值发生时,LVCF法简单而有效;随着缺失率的增加,均值抽取法和多重借补法处理效果更稳定;得分匹配法借补缺失值考虑了变量之间的相关性,最大程度地利用了数据集包含的信息,同时考虑了含缺失值变量的实际变异程度,因此取得了最好的借补效果。 Data with missing values is common in the emergency statistic under the public emergency. This paper proposes a method named score- match to deal with the longitudinal data sets with different rates of missing values, which has been compared with three other methods such as LVCF, unconditional - mean - distill and multiple imputation. The results of statistic analysis suggest that LVCF is simple and effective when few missing values happen, and with the rates of missing values increasing unconditional - mean - distill and multiple imputation are better. Overall, score- match gets the best result because it takes the relevance and variation between the variables into consideration.
出处 《统计与信息论坛》 CSSCI 2009年第11期3-8,共6页 Journal of Statistics and Information
基金 江苏省软科学研究计划项目<江苏省公共突发事件应急统计的方法和运行机制研究>(BR2008070)
关键词 公共突发事件 应急统计 纵向缺失数据 得分匹配法 public emergency emergency statistic longitudinal data with missing data score- match method
  • 相关文献

参考文献13

  • 1Streiner D L, Finkle W D. The case of the missing data: methods of dealing with dropouts and other research vagaries[J]. Can J Psychiatry, 2002, 47(1):68-75. 被引量:1
  • 2Brazi Federica, Woodward, Mark. Imputation of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies[J ]. American Journal of Epidemiolcgy, 2004,160(1) : 34 - 35. 被引量:1
  • 3Abraham, Todd W, Russell, et al. Missing data: a review of current methods and applications in epidemiological research[J]. Current Opinion in Psychiatry, 2004, 17(4):315- 321. 被引量:1
  • 4Fulufhdo V Ndwamondo, Shakir Mohamed, Tshilidzi Marwala. Missing data: a comparison of neural network and expectation maximization techniques[J]. Current Science, 2007, 93(11) : 1514 - 1521. 被引量:1
  • 5Plaia A, Bondi A L. Single imputation method of missing values in environmental pollution data sets [ J ]. Atmospheric Environment, 2006, 40(6) :7316 - 7330. 被引量:1
  • 6周艺彪,姜庆五,赵根明.调查研究中数据缺失的机制及处理方法[J].中国卫生统计,2005,22(5):318-321. 被引量:11
  • 7Andrew Gelman, Iven Van Mechelen, Geert Verbeke. Multiple imputation for model checking: completed - data plots with missing and latent data[J]. Biometrics,2005,61(3) :74 - 85. 被引量:1
  • 8Jerome P Reiter. Selecting the number of imputed datasets when using multiple imputation for missing data and disclosure limitation[J ]. Statistics & Probability Letters, 2008,78 (5):15 - 20. 被引量:1
  • 9John R Hayes, Jonathan I Groner. Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data[J]. Journal of Pediatric Surgery, 2008, 43(12) :924 - 927. 被引量:1
  • 10茅群霞,李晓松.多重填补法Markov Chain Monte Carlo模型在有缺失值的妇幼卫生纵向数据中的应用[J].四川大学学报(医学版),2005,36(3):422-425. 被引量:7

二级参考文献31

  • 1周艺彪,赵根明,姜庆五.多重填充方法评估日本血吸虫病感染率[J].中国公共卫生,2004,20(3):286-288. 被引量:4
  • 2周艺彪,姜庆五,赵根明.不完全数据处理方法——多重填充[J].中华预防医学杂志,2004,38(6):424-426. 被引量:4
  • 3Arnold Alice M, Kronmal Richard A. Multiple Imputation of Baseline Data in the Cardiovascular Health Study. American Journal of Epidemiology,2003;157(1):74. 被引量:1
  • 4Abraham WT, Russell DW. Missing data:a review of current methods and applications in epidemiological research. Current Opinion in Psychiatry,2004;17(4):315. 被引量:1
  • 5Mary Beth Landrum,Mark P Becker. A multiple imputation strategy for incomplete longitudinal data. Statistics in Medicine,2001;20:2741. 被引量:1
  • 6Yang C Yuan. Multiple imputation for missing data:Concepts and new development. SAS Institute Inc,1999:267-25. 被引量:1
  • 7Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons,1987:15-22. 被引量:1
  • 8Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine,1999;18:681. 被引量:1
  • 9Schafer JL,Maren K Olsen. Multiple imputation for multivariate missing-data problems:a data analysis's perspective. Multivariate Behavioural Research,1998;33:545. 被引量:1
  • 10MCMC Method for Arbitrary Missing Data. SAS/STAT 9 User's guide. North Carolina:SAS Institute Inc,2002:159-169. 被引量:1

共引文献16

同被引文献98

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部