期刊文献+

解决TSP问题的局部调整离散微粒群算法 被引量:5

Local adjusting discrete particle swarm optimization algorithm for traveling salesman problem
下载PDF
导出
摘要 微粒群算法提出以来一直不能较好的解决离散及组合优化问题,针对这个问题,通过对微粒群算法的优化机理的分析,对原有的微粒群进化方程中的速度和位置的更新等进行重新的定义,同时提出一种具有自适应能力的惯性因子,使其适合解决TSP这样的组合优化问题。针对过去的离散算法整体调整容易形成对路径的破坏这一缺点,在重新定义的算法上加入局部调整的策略,形成一种局部调整的离散微粒群算法(local adjustive discrete PSO,LADPSO),通过在ch31和eil51上的试验,证明了该算法在解决这一问题上是可行的。 Particle swarm optimization (PSO) is generic heuristic algorithm based on swarm intelligence. It is applied to many practical continuous optimization problems. But it is not extended to solve discrete and combinatorial optimization problem effectively. For solving the problem, particle' s position, velocity and their operation rules are redefined, at the same time, this inertial operator is put forward which has the self-adaptive ability. For the past discrete algorithm' s shortcomings in damaging the path caused by adjusting the overall formation, this new algorithm adds a local adjustment strategy, then forming a local adjustment discrete PSO algorithm. Through the test on Ch31 and eil51, it proves new algorithm in solving TSP is feasible.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第21期4936-4938,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60674104) 山西省自然科学基金项目(2007011046)
关键词 离散微粒群算法 旅行商问题 局部调整 组合优化 自适应 discrete particle swarm optimization travel salesman problem local adjusting combination optimization problem adaptive modification
  • 相关文献

参考文献6

二级参考文献73

  • 1蔡之华,彭锦国,高伟,魏巍,康立山.一种改进的求解TSP问题的演化算法[J].计算机学报,2005,28(5):823-828. 被引量:60
  • 2高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:121
  • 3王劲飞,陈琎,魏巍,李振华.基于改进郭涛算法的TSP问题求解[J].计算机工程与设计,2006,27(5):744-745. 被引量:5
  • 4Teng Hong-Fei, Sun Shou-Lin, Ge Wen-Hai, Zhong Wan-Xie. Layout optimization for the dishes installed on a rotating table. Science in China (Series A), 1994,37(10): 1272~1280 被引量:1
  • 5Kennedy J.. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In: Proceedings of the Congress on Evolutionary Computation, Washington DC, USA, 1999, 1931~1938 被引量:1
  • 6Clerc M., Kennedy J.. The particle swarm--Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computer, 2002,6(1): 58~73 被引量:1
  • 7van den Bergh F.. An analysis of particle swarm optimizers[Ph.D. dissertation]. Department of Computer Science, University of Pretoria, South Africa, 2002 被引量:1
  • 8Kennedy J., Eberhart R.C.. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth Australia, 1995, 1942~1948 被引量:1
  • 9Eberhart R.C., Shi Y.. Particle swarm optimization: Developments, applications and resources. In: Proceedings of the Congress on Evolutionary Computation 2001, 2001, 81~86 被引量:1
  • 10Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[A]. Proc Sixth Int Symposium on Micro Machine and Human Science[C]. Nagoya,1995.39-43. 被引量:1

共引文献315

同被引文献43

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部