期刊文献+

基于遗传和粒子群结合的文化算法 被引量:6

A New Cultural Algorithm Based on Hybrid of GA and PSO Algorithm
下载PDF
导出
摘要 针对粒子群优化(PSO)算法的"早熟"现象,给出了基于遗传和粒子群结合的文化演化算法.该算法将PSO/GA纳入文化算法框架,形成PSO的主群体空间和GA的信仰群体空间,两群体空间可以独立并行演化,并在适当的时机实现信仰群体空间对主群体空间的引导,达到改善粒子群优化算法全局搜索能力、提高计算精度的目的.仿真表明,该算法的优化性能和效率优于PSO算法、GA算法和GA-PSO混合算法. A new cultural algorithm based on the hybrid of GA and PSO algorithm is proposed to solve the "Premature" problem of global search of PSO algorithm. With both PSO algorithm and GA included in the framework of cultural algorithm, a PSO main population space and GA belief population space are formed, and they can evolve independently in paralled to enable the belief population space to guide the main population space in due time so as to improve the global search ability of PSO algorithm and enhance the computation precision. Simulation results showed that the algorithm proposed is superior to PSO algorithm, GA and GA-PSO hybrid algorithm in optimized performance and efficiency.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期1542-1545,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2006AA060201)
关键词 粒子群优化 文化算法 遗传算法 全局搜索 混合结构 particle swarm optimization (PSO) cultural algorithm (CA) genetic algorithm (GA) global search hybrid framework
  • 相关文献

参考文献9

  • 1Reynold.s R G, Michalewic Z, Cavaretta M. Using cultural algorithms for constraint handling in GENOCOP[C]//Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995 : 298 - 305. 被引量:1
  • 2Chung C, Reynolds R G. A tested bed for solving optimization problems using cultural algorithms[C]//Prcceedings of the Fifth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1996:313 - 316. 被引量:1
  • 3Jin X, Reynolds R G. Using knowledge-based evolutionary computation to ,solve nonlinear constraint optimization problems: a cultural algorithm approach [ C ] // Proceedins of the 1999 Congress on Evolutionary Computation. Washington DC: IEEE Service Center, 1999:1672 - 1678. 被引量:1
  • 4李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 5Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization[C] //Proceedings of the 2001 Congress on Evolutionary Computation. Seoul: IEEE Press, 2001:101 - 106. 被引量:1
  • 6Hu X H, Eberhart R C. Multi-objective optinization using dynamic neighborhood particle swarm optimization[C] // Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002:1677 - 1681. 被引量:1
  • 7Shi Y, Eberhart R C. Empirical study of particle swarm optimization [ C ] // Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 1999:1945 - 1950. 被引量:1
  • 8Krink T, Vesterstrom J S, Riget J. Particle swarm optimization with spatial particle extension[C]//Proc of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002:1474-1497. 被引量:1
  • 9Jin X, Reynolds R G. Using knowledge-based system with hiemrchical architecture to guide the search of evolutionary computation[J ]. International Journal on Artificial Intelligence Tools, 2000,9( 1 ) :27 - 44. 被引量:1

二级参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948. 被引量:1
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43. 被引量:1
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001. 被引量:1
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476. 被引量:1
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434. 被引量:1
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607. 被引量:1
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302

共引文献397

同被引文献54

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部