期刊文献+

基于改进遗传算法的C-TRDM压缩存储 被引量:1

Compressed Storage for C-Temporal Relation Data Model Based on Improved Genetic Algorithm
下载PDF
导出
摘要 针对时态数据库中存在数据冗余、数据量快速增长等问题,结合现有压缩技术,提出基于改进遗传算法的C-TRDM压缩存储技术。将各个时刻的时态关系数据分解为最小粒度的数据并进行编码,采用改进的遗传算法来计算待压缩数据中的最优存储数据以提高压缩比。算法的快速收敛性使去除数据冗余的速度得到提高。 There is data redundancy temporal database and the quantities of temporal database are increasing fleetly, aiming at these problems, this paper puts forward compressed storage tactics based on improved genetic algorithm for temporal data which combine compress technology in existence in order to settle data redundancy in the course of temporal data storage. Temporal relation data at any moment is decomposed into least granularity data and be coded meanwhile. Optimized storage data are figured out by using improved genetic algorithm, and the ratio of compression is enhanced. Celerity astringency of the algorithm can heighten speed of removing data redundancy largely.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第21期178-180,共3页 Computer Engineering
基金 广西教育厅科研基金资助项目(200707LX196) 广西工学院自然科学基金资助项目(院科自0704102)
关键词 时态关系数据模型 改进遗传算法 压缩存储 Temporal Relation Data Model(TRDM) improved genetic algorithm compressed storage
  • 相关文献

参考文献8

二级参考文献26

共引文献16

同被引文献5

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部