期刊文献+

基于自适应退火遗传算法的车间日作业计划调度方法 被引量:19

An Adaptively Annealing Genetic Algorithm based Scheduling Method of Workshop Daily Operating Planning
下载PDF
导出
摘要 遗传算法、模拟退火算法、最优个体保护法在全局收敛性、种群早熟化、收敛速度慢等方面存在应用缺陷.文中提出了自适应退火遗传算法解决车间日作业计划的调度问题.该算法针对遗传算法中组成编码串的变异概率在整个搜索过程中是固定不变的,而且取值较小,促使算法的求解过程很长,且易走向局部最小值,提出自适应变异概率的概念与理论改善遗传算法的收敛速度;针对选择算子对种群多样性的影响,提出整体退火选择的方式(Boltzmann概率选择机制)选择杂交母体,以克服种群早熟化,避免过早收敛.最后结合车间日作业计划静态调度模型给出求解算法和求解实例. Genetic Algorithm, Simulated Annealing Algorithm and Optimum Individual Protecting Algorithm origin from the order of nature, they exist some application limitations in the global astringency, population precocity and convergence rapidity. The Adaptively Annealing Genetic Algorithm (AAGA) is provided to deal with the scheduling question of workshop daily operating planning based on the above algorithms. In AAGA, the adaptive mutation probability is built to improve the convergence rapidity of genetic algorithm through adaptively changing mutation probability to shorten the entire optimizing process and to avoid the local optimization, the Boltzmann probability selection mechanism from simulated annealing algorithm is applied to select the crossover parents, which can solve the population precocity and the local convergence. At last, the AAGA based scheduling algorithm and domain model of workshop daily operating planning are discussed, the computing results are depicted and compared between AAGA and GA.
作者 刘敏 严隽薇
出处 《计算机学报》 EI CSCD 北大核心 2007年第7期1164-1172,共9页 Chinese Journal of Computers
基金 本课题得到国家科技攻关计划项目基金(2005BA908810) 上海市世博科技专项基金(05dz05810)资助
关键词 自适应退火遗传算法 遗传算法 车间日作业计划 调度 生产计划 adaptively annealing genetic algorithm genetic algorithm workshop daily operating planning scheduling production planning
  • 相关文献

参考文献15

  • 1Sohlenius G.Concurrent Engineering.Annals of the CIRP,1992,41(2):645-655 被引量:1
  • 2祁国宁,韩永生,陈俊著..计算机集成产品工程[M].北京:中国经济出版社,1999:59.
  • 3刘敏..基于分布式动态工艺设计的CAPP、PPS集成化系统建模及关键问题研究[D].浙江大学,1999:
  • 4徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 5Holland J H.Adaptation in Natural and Artificial Systems.Ann Arbor:Michigan University Press,1975 被引量:1
  • 6Fogel D B.An introduction to simulated evolutionary optimization.IEEE Transactions on Neural Networks,1994,5(1):3-14 被引量:1
  • 7Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.Reading,MA:Addison-Wesley,1989 被引量:1
  • 8Eiben A E,Aarts E H,Van Hee K M.Global convergence of genetic algorithms:An infinite markov chain analysis//Schwefel H P et al eds.Parallel Problem Solving from Nature.Heidelberg,Berlin:Springer-Verlag,1991:4-12 被引量:1
  • 9Qi X F,Palmieri F.Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space,Ⅰ:Basic properties of selection and mutation.IEEE Transactions on Neural networks,1994,5(1):102-119 被引量:1
  • 10Sirag D J,Weisser D J.Towards unified thermodynamic operator//Proceedings of the International Conference on Genetic Algorithms and their Applications.Erbum Association,Hillsdale,NJ,1987 被引量:1

二级参考文献6

共引文献318

同被引文献174

引证文献19

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部