期刊文献+

基于混合模型的移动机器人同时定位与环境建模

Mixed-model based simultaneous localization and mapping approach for mobile robot
下载PDF
导出
摘要 提出一种基于混合地图模型的融合声纳传感器观测信息与里程计信息的同时定位与环境建模(SLAM)方法.该方法用混合模型即栅格地图模型和直线特征地图模型表示环境地图.首先,采用三区域声纳模型以及贝叶斯法则构建栅格地图,并通过在空间和时间上融合不同时刻多个声纳传感器的信息提高地图精度.然后,引入霍夫变换提取直线特征,创建直线特征地图,并通过比较地图中直线段的方向相似性、共线性与交叠性,确定全局与局部地图是否匹配.最后,利用直线特征以及扩展卡尔曼滤波器(EKF),通过状态预测、观测预测、位姿更新3个阶段估计出机器人更新的位姿信息,校正构建的地图模型,从而实现机器人的同时定位与环境地图构建.仿真实验和真实环境实验验证了该算法的可行性与有效性. A new simultaneous localization and mapping (SLAM) approach based on a mixed map model using sonar data and odometry information is presented. The mixed model composed of occupancy grids and line maps is utilized to represent the environment map. Firstly, three region models and Bayes' rules are used to construct an occupancy grid map. The map precision is enhanced through fusing the information of several sonar sensors at different times. Then, the Hough transform is introduced to extract line features and the line feature maps are created. The local map and the global map are matched by comparing orientation, collinearity and overlap of the straight-line segment in the maps. Finally, the simultaneous localization and mapping are accomplished with the line features and extended Kalman filter through state prediction, observation prediction and estimation phase, which can estimate the robot pose and correct the map model. The simulation results and the real experimental results indicate the feasibility and validity of this approach.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期923-927,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60805032) 国家高技术研究发展计划(863计划)资助项目(2007AA041703 2006AA040202)
关键词 移动机器人 同时定位与环境建模 贝叶斯法则 扩展卡尔曼滤波器 mobile robot simultaneous localization and mapping Bayes' rules extended Kalman filter
  • 相关文献

参考文献16

  • 1陈伟,吴涛,李政,贺汉根.基于粒子滤波的单目视觉SLAM算法[J].机器人,2008,30(3):242-247. 被引量:14
  • 2Durrant-Whyte H, Majumder S, Thrun S, et al. A Bayesian algorithm for simultaneous localization and map building [ C ]//Proceedings of the 10 th International Symposium of Robotics Research. Berlin, Germany, 2003 : 49 - 66. 被引量:1
  • 3Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots [J]. Machine Learning, 1998,31 (1/2/3) : 29 - 53. 被引量:1
  • 4Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics [ J ]. Autonomous Robot Vehicles, 1990, 8 : 167 - 193. 被引量:1
  • 5Smith R, Self M, Chesseman P. A stochastic map for uncertain spatial relation-ships [ C ]//Proceedings of the 4th International Symposium on Robotics Research. Cambridge: MIT Press, 1987 : 467 -474. 被引量:1
  • 6Csorba M. Simultaneous localization and map building[D]. Oxford: University of Oxford, 1997. 被引量:1
  • 7Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building(SLAM) problem[ J]. IEEE Transactions on Robotics and Automation, 2001, 17(3) : 229 -241. 被引量:1
  • 8Elfes A. Multi-source spatial data fusion using Bayesian reasoning[ M]. New York: Academic Press, 1992 : 137 - 163. 被引量:1
  • 9Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[M ]. Berlin: Springer, 1990 : 167 - 193. 被引量:1
  • 10Montemerlo M, Thrun S, Koller D, et al. FastSLAM: a factored solution to the simultaneous localization and mapping problem [ C ]//Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada, 2002: 593- 598. 被引量:1

二级参考文献22

  • 1THRUN S.Learning metric-topological maps for indoor mobile robot navigation[J].Artificial Intelligence,1998,99(1):21-71. 被引量:1
  • 2SPERO D J,JARVIS R A.Path planning for a mobile robot in a rough terrain environment[C].Third international workshop on robot motion and control,2002:417-422. 被引量:1
  • 3NAGATANI K,CHOSET H.Autonomous mobile robot exploration based on the generalized voronoi graph in the presence of localization error[J].SPIE,2003. 被引量:1
  • 4SIMMON R,APFELBAUM D,BURGARD W,et al.Coordination for multi-robot exploration and mapping[C].Proceedings of National Conference on Artificial Intelligence.AAAI,2000. 被引量:1
  • 5IOANNIS R,VICENT L S,AI P N,et al.Limited communication,multi-robot team based coverage[C].Proceedings of the IEEE Intl.Conference on Robotics and Automation,2004:3462-3467. 被引量:1
  • 6YAMAUCHI B.Frontier-based exploration using multiple robots[C].Second International Conference on autonomous Agents,1998:47-53. 被引量:1
  • 7MIGUEL R,AXEL P.A comparison of three uncertainty calculi for building sonar-based occupancy grids[J].Robotics and Autonomous Systems,2001,35:201-209. 被引量:1
  • 8ELFES A.Sonar-based real-world mapping and navigation[J].IEEE Journal of Robotics and Automation,1987,3:249-265. 被引量:1
  • 9XUE CHENG L,CHEONG YEEN K,SHUZHI S G,et.al.Online map building for autonomous mobile robots by fusing laser and sonar data[C].Proceedings of the IEEE Intl.Conference on Mechatronics and Automation,2005:993-998. 被引量:1
  • 10DANIEL P,EDUARDO M N,HUGH D W.An evidential approach to map-building for autonomous vehicles[J].IEEE Transction on Robotics and Automation,1998,14(4):623-629. 被引量:1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部