期刊文献+

未知环境下的移动机器人SLAM方法 被引量:18

SLAM method for mobile robot in unknown environment
原文传递
导出
摘要 基于改进粒子滤波器,提出了一种应用于未知环境下的移动机器人的同步定位与地图创建方法.针对传统粒子滤波器经过多次迭代后粒子退化从而需要大量粒子才能提高定位精度的问题,设计了一种基于人工鱼群算法的粒子滤波算法,该方法主要利用人工鱼群算法对预估粒子进行二次更新,从而调整了粒子的分布使其更加接近真实位姿,提高机器人的SLAM性能.经过Matlab仿真实验,证明了该方法能够准确快速地对机器人定位,并且构建的地图精度也很高. A mobile robot SLAM (simultaneous localization and mapping) method in unknown environment based on improved particle filter was proposed. The particles degradation of the traditional particle filter and the need of a large number for particles to improve the precision of robot location were focused. AFSA (artificial fishing-swarm algorithm) was introduced into the particle filter method. This method updates the particles' prediction by using she AFSA which could adjust the distribution of particles to concentrate upon the robotts true pose. As a result, the ability of SLAM is enhanced. Through the Matlab simulation, results show that the method can locate the robot quickly and accurately, and improve the mapping precision.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第7期9-13,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2007AA041501)
关键词 移动机器人 粒子滤波器 同步定位与地图创建 粒子退化 人工鱼群算法 mobile robot particle tilter simultaneous locahzatlon and mapping (SLAM) particlesdegradation artificial fishing-swarm algorithm
  • 相关文献

参考文献11

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2Daum F. Nonlinear filters: Beyond the Kalman filter [J]. IEEE A and E Systems Magazine, 2005, 20(8) : 177-183. 被引量:1
  • 3Bailey T J,Neito J G. Consistency of the EKF-SLAM algorithm[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE,2006: 3562-3568. 被引量:1
  • 4Banani S A, Masnadi-Shirazi M A. A new version of unscented Kalman filter[C] // Proceedings of World Academy of Science, Engineering and Technology. Amsterdam: WASET, 2007:192-197. 被引量:1
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[J]. IEE Proceedings: F, 1993, 140(2): 107- 113. 被引量:1
  • 6周武,赵春霞.一种改进的边缘粒子滤波SLAM方法[J].华中科技大学学报(自然科学版),2008,36(S1):181-185. 被引量:4
  • 7潘薇,蔡自兴,陈白帆.基于改进粒子滤波器的移动机器人同时定位与建图方法[J].模式识别与人工智能,2008,21(6):843-848. 被引量:6
  • 8Smith R, Cheeseman P. On the representation and estimation of spatiail uncertainty[J]. The lntenational Journal of Robotics Reseach, 1986, 5(4): 56-58. 被引量:1
  • 9Montemerlo M, Thrun S, Koller D, et al. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]//Proceedings of the International Conference on Artificial Intelligence. Acapulco:AAAI, 2003: 1151-1156. 被引量:1
  • 10Montemerlo M, Thrun S, Koller D, et al. FastSLA M, a factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the National Conference on Artificial Intelligence. Cambridge~AAAI, 2002:593-598. 被引量:1

二级参考文献32

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2陈得宝,赵春霞.一种改进遗传算法性能的方法研究[J].南开大学学报(自然科学版),2005,38(6):84-88. 被引量:6
  • 3余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 4戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17. 被引量:1
  • 5Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM)-Part Ⅰ: The Essential Algorithms. Robotics & Automation Magazine, 2006, 13(2) : 99 - 108 被引量:1
  • 6Smith R C, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty. International Journal of Robotics Research, 1987, 5(4) : 56 -68 被引量:1
  • 7Smith R C, Cheeseman P. Estimating Uncertain Spatial Relationships in Robotics//Proc of the Conference on Uncertainty in Artificial Intelligence. Cambridge, USA, 1988, 2(8) : 435 -461 被引量:1
  • 8Montermerlo M, Thrun S, Koller D, et al. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem// Proc of the AAAI National Conference on Artificial Intelligence. Menlo Park, USA, 2002 : 593 - 598 被引量:1
  • 9Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampiing Methods for Bayesian Filtering. Cambridge, UK : University of Cambridge, 1998 : 1 - 36 被引量:1
  • 10Kennedy J, Eberhar R C. Particles Swarm Optimization// Proc of the IEEE Conference on Neural Networks. Perth, Australia, 1995 : 1942 - 1948 被引量:1

共引文献933

同被引文献122

引证文献18

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部