期刊文献+

基于PCA的决策树算法在心脏病诊断中的应用 被引量:7

Application of Decision Tree Algorithm Based on PCA in the Application of Heart Disease Diagnosis
下载PDF
导出
摘要 主成分分析(Principal Component Analysis,PCA)可以处理大量过程参数间的关系与变化,排除次要因素,提取主要因素。文章将主成分分析和决策树C4.5算法相结合,提出一种心脏病诊断预测的新方法,该方法采用PCA方法对影响心脏病诊断的众多变量进行降维处理,减少了预测模型的输入量,消除输入数据间的相关性,用C4.5算法建立心脏病诊断的预测模型。经实验证明有效的提高了C4.5算法的分类正确率,提高了心脏病诊断的正确率。 Principal Component Analysis (PEA) can handle a large number of process parameters and changes the relationship between the exclusion of secondary factors, extraction of the main factors. The combination of the principal component analysis and decision tree algorithm C4.5, has been used in the heart disease diagnosis. The new forecast method first use PeA for data dimensionality reduction, reducing the input of the prediction model. Then the C4.5 algorithm has used to establish the prediction model of the heart disease diagnosis. The experiment proved that the result of this method was more accurate than the C4.5 algorithm, and it improved the diagnostic accuracy rate of heart disease.
作者 程颖 崔运涛
出处 《计算机与数字工程》 2009年第10期171-174,共4页 Computer & Digital Engineering
关键词 主成分分析 决策树C4.5算法 信息增益 心脏病诊断 PCA decision tree algorithm C4.5 information gain heart disease diagnosis
  • 相关文献

参考文献10

二级参考文献55

共引文献69

同被引文献44

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部