期刊文献+

基于LS_SVM的不确定系统神经滑模控制方法研究 被引量:3

Study on neural network sliding-mode control for uncertain systems based on least square support vector machine
原文传递
导出
摘要 针对一类参数大范围变化的不确定系统,提出一种基于分类转换策略的神经滑模控制方法.按小偏差原理对系统模型进行划分,利用结合主成分分析的最小二乘支持向量机进行分类训练,并分别设计基于径向基函数神经网络在线调整切换项增益的滑模控制器,在线时利用分类器按系统数据自动选择相应的控制器.同时,引入结合混沌机制的量子粒子群算法,并将其用于控制器近似最佳切换函数的构造.仿真结果表明,系统具有良好的跟踪性能和较强的鲁棒性,有效地降低了抖振. A classifying and switching strategy based on least square support vector maehine(LS_SVM) for the control of uncertain system with the parameters varying in a wide range is proposed. The original system model is divided into several models with small range of uncertainty. These models are classified by LS_SVM combined with principal component analysis(PCA) offline. For each model, the sliding-mode controller(SMC) with its gain tuned by radial basis function neural network(RBFNN) is designed and applied. In online situation, the designed SMC is selected automatically by LSSVM based on system data. The quantum-behaved particle swarm optimization(QPSO) with chaos strategy is designed and applied to adjusting the parameters, so as to construct an optimized switching function. Finally, the system scheme is designed by the proposed strategy. Simulation results show the high tracking performance and strong robustness of the new strategy, as well as the effectively reduced chattering problem.
作者 赵俊 陈建军
出处 《控制与决策》 EI CSCD 北大核心 2009年第10期1559-1564,共6页 Control and Decision
基金 国家863计划项目(2006AA04Z402)
关键词 不确定系统 最小二乘支持向量机 量子离子群算法 滑模控制 神经网络 Uncertain system Least square support vector machine Quantum-behaved particle swarm optimization Sliding mode control Neural network
  • 相关文献

参考文献9

二级参考文献38

共引文献2869

同被引文献27

  • 1郭秩维,白广忱.Application of Least Squares Support Vector Machine for Regression to Reliability Analysis[J].Chinese Journal of Aeronautics,2009,22(2):160-166. 被引量:18
  • 2王贞艳,张井岗,陈志梅.神经网络滑模变结构控制研究综述[J].信息与控制,2005,34(4):451-456. 被引量:16
  • 3刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2006. 被引量:19
  • 4UTKIN V I. Sliding Modes in Control and Optimization [ M]. New York: Springer, 1992. 被引量:1
  • 5SHAO Ke-yong, GAO Hong-yu, YU Xian-li, et al. Neural Networks Variable Structure Control for Nonlinear Time-Delay Systems Based on Robust Control [ C] //Sixth World Congress on Intelligent Control and Automation. Dalian, China: [ s. n. ], 2006 : 2461-2464. 被引量:1
  • 6MAN Z H, YU X H, ESHRAGHIAN K, et al. A Robust Adaptive Sliding Mode Tracking Control Using an RBF Neural Network for Robotic Manipulators [ C ] //IEEE International Conference on Neural Networks. [ S. l. ]: IEEE, 1995: 2403- 2408. 被引量:1
  • 7Michael Defoort, Thierry Floquet, Annemarie Kokosy, Wilfrid Per- ruquetti. A novel higher order sliding mode control scheme [ J ]. Systems & Control Letters, 2009, 58 (2) : 102-108. 被引量:1
  • 8Mohamed Mihoub, Ahmed Said Nouri, Ridha Ben Abdennour. Real-time application of discrete second order sliding mode control to a chemical reactor[ J]. Control Engineering Practice, 2009, 17 (9) : 1089-1095. 被引量:1
  • 9E.A. Tannuri, A.C. Agostinho, H.M. Morishita, L. Moratelli Jr. Dynamic positioning systems : An experimental analysis of slid- ing mode control [ J]. Control Engineering Practice, 2010, 18 (10) : 1121-1132. 被引量:1
  • 10Vapnik V N. The nature of statistical learning theory [ M ] . New York : Springer2Verlag. 1995. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部