期刊文献+

基于低通滤波和经验模态分解的舰船耐波性试验信号分析方法研究 被引量:8

Study on the measured signal analysis method based on low-pass filtering and EMD for ship seakeeping test
下载PDF
导出
摘要 针对舰船耐波性实测信号中趋势项难以消除而影响滤波精度这一问题,采用经验模态分解方法消除趋势项的影响。根据舰船对波浪运动响应的低频特点,在经验模态分解前先进行低通滤波,可使实测运动信号中的谱峰频率处在相对高频位置,减少EMD迭代次数,并使有用信息包含在第一个IMF中,方便对有用模态的识别。还针对实船耐波性试验无法直接获得垂荡位移的实际问题,对垂向运动加速度联合采用低通滤波、数值积分和EMD去趋势项消除积分误差的方法获得垂荡,通过模型耐波性试验以及对实舰横摇角速度采用该方法求得的横摇与实测横摇的比较,验证了该方法在舰船耐波性实测信号分析中的有效性。 A method based on low-pass signal filtering and empirical mode decomposition was applied to eliminate high-frequency noises and low-frequency trends included in signals measured in seakeeping test. A signal is deposed by low-pass filtering before empirical mode decomposition, which can make the signal's peak frequency become relatively high frequency, simplify the iterating process of EMD and make it easy to identify the effective IMF.Owing to the heave of ship can not be directly measured in seakeeping test,a method combined with low-pass filtering,numerical integration and EMD was used to calculate it from the vertical motion acceleration signal. A large number of signals measured in the seakeeping tests of a high speed craft model and a ship were analyzed by this method and the results show this method is effective.
出处 《船舶力学》 EI 北大核心 2009年第5期712-717,共6页 Journal of Ship Mechanics
基金 全国优秀博士学位论文作者专项资金资助项目(200551) 国家"863"计划资助项目(2007AA11Z242)
关键词 耐波性试验 低通滤波 趋势项 经验模态分解(EMD) 垂荡 相对高频 同有模态函数(IMF) seakeeping test low-pass signal filtering trend empirical mode decomposition (EMD) heave relatively high frequency intrinsic mode function (IMF)
  • 相关文献

参考文献10

二级参考文献25

  • 1高品贤.趋势项对时域参数识别的影响及消除[J].振动.测试与诊断,1994,14(2):20-26. 被引量:28
  • 2陈隽,徐幼麟.经验模分解在信号趋势项提取中的应用[J].振动.测试与诊断,2005,25(2):101-104. 被引量:57
  • 3张永强,姜节胜,高跃飞,周国盈.微分变换法在动力学响应分析及系统边界参数识别中的应用研究[J].机械强度,2005,27(4):419-424. 被引量:2
  • 4别所正利.高速艇の规则波中纵运动の研究[A]..日本造船学会论文集[C].,1974年135号.. 被引量:3
  • 5[1]Bendat J S, Piersol A G. Random data: analysis and measurement procedures[M]. Second edition. New York: John Wiley and Sons, 1986. 396-398. 被引量:1
  • 6[3]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non - stationary time series analysis[J]. Proceedings of the Royal Society of Longdon, Series A, 1998, 454: 903- 995. 被引量:1
  • 7[5]Xu Y L, Chen J. Characterizing nonstationary wind speed using empirical mode decomposition[J]. J of Structural Engineering,ASCE, 2004, 130(6): 912 - 920. 被引量:1
  • 8Ling Jing,Qu Liangsheng.Feature Extraction Bas-ed on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis. Journal of Sound and Vibration, 2000,234(1):135-148 被引量:2
  • 9Peter W T, Peng Y H, Richard Y. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis-Their Effectives and Flexibilities. Journal of Vibration and Acoustics, 2000, 123(3): 303-310 被引量:2
  • 10Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A, 1998, 454(12): 903-995 被引量:2

共引文献102

同被引文献41

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部