期刊文献+

基于门限接受算法的正交最小一乘回归新算法 被引量:1

A New Algorithm for the Least Orthogonal Absolute Deviation Regression Based on the Threshold Accepting Algorithm
原文传递
导出
摘要 正交最小一乘方法由于其稳健性而在工程中有广泛的应用,然而求解线性模型正交最小一乘参数估计算法往往过于复杂或者只对样本和变量个数较少的问题适用.把正交最小一乘参数估计问题转化为组合优化问题,再使用门限接受算法求解,通过计算机仿真说明了本文算法的正确性和有效性. The least orthogonal absolute deviation criteria is widely used in engineering because of its robustness, but the algorithms for solving the least orthogonal absolute deviation estimate of the regression coefficient either too explicated or only efficient for small samples and variables. In this paper, a new method based on threshold accepting algorithm to solve the least orthogonal deviation estimates of regression coefficient is proposed by changing the problem to the combinatorial optimization based on it's properties. At last the numerical experimentations verified the validity of the new method.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第20期122-128,共7页 Mathematics in Practice and Theory
基金 中国地震局教师科研基金(20090126) 防灾科技学院防灾减灾青年基金(2008A05)
关键词 正交最小一乘 门限接受算法 线性模型 least orthogonal absolute deviation threshold accepting algorithm linear model
  • 相关文献

参考文献7

二级参考文献11

共引文献21

同被引文献9

  • 1梁怡,吴可法.一类非光滑最优化问题的有限步解法[C]//中国运筹学会第六届学术交流会论文集(章祥荪等主编),Global-Link出版公司,香港,2000,801-811. 被引量:5
  • 2JAIN A K,MURTY M N,FLYNN P J.Data clustering:A review[J].ACM Computing Surveys,1999,31(3):264-323. 被引量:1
  • 3XU RUI,DONALD WUNSCH I I.Survey of clustering algorithms[J].IEEE Transactions on Neural Networks,2005,16(3):645-678. 被引量:1
  • 4van AELST S,WANG X,ZAMAR R H,et al.Linear grouping using orthogonal regression[J].Computational Statistics and Data Analysis,2006,50(5):1287-1312. 被引量:1
  • 5OUILLON G,DUCORBIER C,SORNETTE D.Automatic reconstruction of fault networks from seismicity catalogs:Three-dimensional optimal anisotropic dynamic clustering[J].Journal of Geophysical Research,2008,113(B1):B01306.1-B01306.15. 被引量:1
  • 6GARCIA-ESCUDERO L A,GORDALIZA A,SAN MARTIN R,et al.Robust linear clustering[J].Journal of the Royal Statistical Society,2009,71(1):301-318. 被引量:1
  • 7MAHAJAN M,NIMBHORKAR P,VARADARAJAN R K.The planar k-means problem is NP-hard[C]// Proceedings of the 3rd Annual Workshop on Algorithms and Computation WALCOM,LNCS 5431.Berlin:Springer-Verlag,2009:274-285. 被引量:1
  • 8ALOISE D,DESHPANDE A,HANSEN P,et al.NP-hardness of Euclidean sum-of-squares clustering[J].Machine Learning,2009,75(2):245-248. 被引量:1
  • 9HARRINGTON J.Tools for linear grouping analysis (LGA)[EB/OL].(2009-04-17)[2009-09-19].http://cran.r-project.org/web/packages/lga/lga.pdf. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部