期刊文献+

基于极端积算子的LL型模糊数的最小一乘回归 被引量:1

Least-absolutes Regression Using LL Type of Fuzzy Number Operations Based on Drastic Product
下载PDF
导出
摘要 针对模糊输入和模糊输出数据系统中的回归分析问题,考虑到系统中依赖关系不确定性特点以及模型稳健性和求解准确性等需求,建立一个模糊最小一乘优化模型。首先利用能诱导出LL型模糊数乘法保形运算的唯一T-模,即极端积算子,结合扩张原理,给出LL型模糊数间加法和乘法的运算规则。其次,基于LL型模糊数间的完备距离,得到模糊线性回归模型的参数估计,由此给出考虑清晰参数或清晰输入的两个简约模型及相应参数估计。通过计算Kim&Bishu测度、贴近测度和输出展形差异测度,比较与其他7种回归方法的优劣,并由模型的敏感性分析,充分说明本文算法的有效性和稳健性。 Fuzzy least -absolutes regression is developed by considering uncertain dependence, model robustness and exact solutions in the system with fuzzy inputs and fuzzy output. Firstly,Tw based addition and multiplication properties for LL type of fuzzy number are derived using the extension principle, where TW is also called drastic product,which is the only T norm inducing a shape preserving multiplication of LL type of fuzzy number. Second- ly, fuzzy parameters are determined based on a complete metric on LL type of fuzzy number and then two particu- lar cases of the general model are discussed. Finally, the potential of the proposed model with regard to other re- gression approaches is illustrated by some experiments and sensitivity analysis by adopting several measures, which turns out that the proposed model has good prediction accuracy and resistant power a^ainst outliers.
作者 王宁 陆秋君
出处 《运筹与管理》 CSSCI CSCD 北大核心 2016年第1期145-153,共9页 Operations Research and Management Science
基金 上海理工大学博士启动经费项目(1000341001)
关键词 极端积算子 LL型模糊数 扩张原理 最小一乘法 模糊线性回归 drastic product LL type of fuzzy number extension principle least -absolutes method fuzzy line-ar regression
  • 相关文献

参考文献32

  • 1Montgonmery D C,Peck E A, Vinning G. Introduction to linear regression analysis [ M ] . 4th Edition. New York: Wiley- Interscience, 2006. 被引量:1
  • 2靳云江,金赛男等.高级计量经济学(上册)[M].北京:北京大学出版社,2007. 被引量:1
  • 3Tanaka H, Uejima S, Asai K. Linear regression analysis with fuzzy model [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1982, 12: 903-907. 被引量:1
  • 4Taheri S M, Kelkinnama M. Fuzzy linear regression based on least absolutes deviations [ J] . Iranian Journal of Fuzzy Systems, 2012, 9: 121-140. 被引量:1
  • 5Diamond P. Fuzzy least squares [ J ]. Information Sciences, 1988, 46 : 141-157. 被引量:1
  • 6Chen L H, Hsueh C C, Chang C J. A two-stage approach for formulating fuzzy regression models [ J ]. Knowledge- Based Systems, 2013, 52: 302-310. 被引量:1
  • 7Pourahmad S, Ayatollahi S M T, Taheri S M. Fuzzy logistic regression:a new possibilistic model and its appli- cation in clinical vague status [ J]. Iranian Journal of Fuzzy Systems, 2011, 8: 1-17. 被引量:1
  • 8Shakouri G H, Nadimi R. Outlier detection in fuzzy linear regression with crisp input-output by linguistic variable view[ J]. Applied Soft Computing, 2013, 13 : 734-742. 被引量:1
  • 9Bisserier A, Boukezzoula R, Galichet S. A revisited approach to linear fuzzy regression using trapezoidal fuzzy intervals[ J]. Information Sciences, 2010, 180: 3653- 3673. 被引量:1
  • 10Chan K Y, Kwong C K, Fogarty T C. Modeling manufacturing processes using a genetic programming based fuzzy regression with detection of outliers [ J ]. Information Sciences, 2010, 180: 506-518. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部