期刊文献+

隐私保护关联规则挖掘算法的研究 被引量:3

Research of privacy preserving association rules mining algorithm
下载PDF
导出
摘要 针对MASK算法的不足,将随机响应技术与关联规则挖掘算法相结合,提出一个多参数随机扰动算法—MRD算法。当以不同的随机参数对数据集进行处理时,可以实现对原始数据的干扰或隐藏,解决了单一使用数据干扰策略和数据隐藏策略的缺陷,有效地提高了算法的隐私保护度。在此基础上,给出了在伪装后的数据集上生成频繁项集的挖掘算法。最后,通过具体实例验证,证明了当随机参数选择合适时,MRD算法的隐私性和准确性均优于原算法。 In view of the insufficiency of MASK algorithm,randomized response technology and association rule mining algorithm are integrated and a multi-parameters randomized disturb algorithm is proposed,which is called MRD algorithm.When the data sets are processed with different randmn parameters,the original data can be disturbed and hidden,and the defects of the simplex using of data diturb and data hiding strategy are solved, and the privacy-preserving degree of the algorithm is improved effectively.On this basis,the algorithm of generating frequent items from transformed data sets is proposed.Finally,through specific certification of examples,it can be proved that when the random parameters are choosen suitably,the privacy and accuracy of MRD algorithm are both better than the original algorithm.
作者 王锐 刘杰
出处 《计算机工程与应用》 CSCD 北大核心 2009年第26期126-130,共5页 Computer Engineering and Applications
基金 黑龙江省自然科学基金No.F0310 哈尔滨工程大学基础研究基金项目(No.HEUF04091)~~
关键词 数据挖掘 关联规则 频繁项集 隐私保护 随机响应 data mining association rule frequent itemset privacy preservation randomized response
  • 相关文献

参考文献10

  • 1Han Jia-wei,Kamber M.数据挖掘概念与技术LM].北京:机械工业出版社,2001.100-200. 被引量:1
  • 2张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 3Rizvi S,Haritsa J.Maintaining data privacy in association rule mining[C]//Proc of the 28th International Conference on Very Large Databases, August 2002. 被引量:1
  • 4Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proc of 20th International Conference on Very Large Data Bases, September 1994. 被引量:1
  • 5陈芸..隐私保护关联规则挖掘[D].江南大学,2006:
  • 6Oliveira S R M,Zaiane O R.Privacy preserving frequent itemset mining[C]//Proc of the IEEE International Conference on Privacy, Security,Data mining, 2002:43-54. 被引量:1
  • 7Oleveira S R M,Zaiane O R.Protecting sensetive knowledge by data sanitization[C]//Proceedings of the Third IEEE International Conference on Data Mining,2003. 被引量:1
  • 8Verykios V S,Bertino E,Nai Fovino I.State-of-the-art in privacypreserving data mining[C]//SIGMOD Record, 2004,33( 1 ). 被引量:1
  • 9仲波..基于关联规则的隐私保护算法研究[D].兰州理工大学,2007:
  • 10沈中林,崔建国.隐私保护下关联规则挖掘方法[J].中国民航大学学报,2007,25(A01):108-110. 被引量:4

二级参考文献18

  • 1Verykios VS,Bertino E,Fovino IN,Provenza LP,Saygin Y,Theodoridis Y.State-of-the-Art in privacy preserving data mining.SIGMOD Record,2004,33(1):50-57. 被引量:1
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques.Beijing:China Machine Press,2001. 被引量:1
  • 3Agrawal R,Srikant R.Privacy-Preserving data mining.In:Weidong C,Jeffrey F,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.Dallas:ACM Press,2000.439-450. 被引量:1
  • 4Rizvi SJ,Haritsa JR.Maintaining data privacy in association rule mining.In:Bernstein PA,Ioannidis YE,Ramakrishnan R,Papadias D,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.682-693. 被引量:1
  • 5Agrawal S,Krishnan V,Haritsa JR.On addressing efficiency concerns in privacy-preserving mining.In:Lee YJ,Li JZ,Whang KY,Lee D,eds.Proc.of the 9th Int'l Conf.on Database Systems for Advanced Applications.LNCS 2973,Jeju Island:Springer-Verlag,2004.113-124. 被引量:1
  • 6Evfimievski A.Randomization in privacy preserving data mining.SIGKDD Explorations,2002,4(2):43-48. 被引量:1
  • 7Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy preserving mining of association rules.In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002.217-228. 被引量:1
  • 8Saygin Y,Verykios VS,Clifton C.Using unknowns to prevent discovery of association rules.ACM SIGMOD Record,2001,30(4):45-54. 被引量:1
  • 9Oliveira SRM,Zaiane OR.Privacy preserving frequent itemset mining.In:Clifton C,EstivillCastro V,eds.Proc.of the IEEE Int'l Conf.on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi:IEEE Computer Society,2002.43-54. 被引量:1
  • 10Kantarcioglu M,Clifton C.Privacy-Preserving distributed mining of association rules on horizontally partitioned data.IEEE Trans.on Knowledge and Data Engineering,2004,16(9):1026-1037. 被引量:1

共引文献54

同被引文献26

  • 1张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 2Verykios V S,Bertino E,Fovino I N,et al.State-of-the-art in privacy preserving data mining[J].ACM SIGMOD Record,2004,33:50-57. 被引量:1
  • 3Verykios V S,Elmagarmid A,Bertino E,et al.Association Rule Hiding[J].IEEE Trans.on Knowledge and Data Engineering,2006,16(4):434-447. 被引量:1
  • 4Oliveira S R M,Zaiane O R.Privacy Preserving Frequent ltemset Mining[C]//Proc.of the IEEE ICDM Workshop on Privacy,Security and Data Mining.Maeoasm,Australian:IEEE Computer Society,2004. 被引量:1
  • 5Oliveira S R M,Zaiane O R.Algorithms for Balancing Privacy and Knowledge Discovery in Association Rule Mining[c]//Proc.of the 7th Int'l Database Engineering and Application Syrup.Hong Kong,China:IEEE Computer Society,2005. 被引量:1
  • 6Jagannathan G,Pillaipakkamnatt K,Wright R N.A new privacy-preserving distributed k-clustering algorithm[C]//Proceedings of the 2006 SIAM International Conference on Data Mining(SDM).Bethesda,Maryland:[s.n.].2006:492-496. 被引量:1
  • 7Nkweteyim D L, Hirtle S C. A new joinless apriori algorithm for mining association roles [J]. Computer Science,2005,3 (3) :284 - 288. 被引量:1
  • 8Warner S L. Randomized response:a survey technique for e- liminating evasive answer bias [ J]. Journal of the American Statistical Association, 1965,60 (30) : 63 - 69. 被引量:1
  • 9Aggarwal C C, Yu P S. A condensation approach to privacy preserving data mining [J]. Lecture Notes in Computer Sci- ence,2004,25 (12) : 183 - 199. 被引量:1
  • 10Yan - Hua F U, Si - Yang G U. Privacy preserving associa- tion rule mining in vertically partitioned data [ J ]. Journal of Computer Applications ,2002,26( 1 ) :639 - 644. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部