期刊文献+

Exchange Bias in NiCo/FeMn Bilayers with Stripe Domains

Exchange Bias in NiCo/FeMn Bilayers with Stripe Domains
下载PDF
导出
摘要 Exchange bias in NiCo/FeMn bilayers is established by alternating current (magnetic) field cooling, and stripe domains are induced as manifested by the "double" hysteresis loop. Only one resonance peak occurs at high magnetic fields in the in-plane ferromagnetic resonance spectra. The exchange field measured by both the magnetometry and ferromagnetic resonances is inversely proportional to the ferromagnetic layer thickness tFM. More remarkably, the exchange field determined by the ferromagnetic resonance is smaller than that of the magnetometry measurements. It is suggested to arise from the misalignment of the unidirectional anisotropie directions in neighboring domains. Exchange bias in NiCo/FeMn bilayers is established by alternating current (magnetic) field cooling, and stripe domains are induced as manifested by the "double" hysteresis loop. Only one resonance peak occurs at high magnetic fields in the in-plane ferromagnetic resonance spectra. The exchange field measured by both the magnetometry and ferromagnetic resonances is inversely proportional to the ferromagnetic layer thickness tFM. More remarkably, the exchange field determined by the ferromagnetic resonance is smaller than that of the magnetometry measurements. It is suggested to arise from the misalignment of the unidirectional anisotropie directions in neighboring domains.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第10期167-169,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 50625102 and 50871030, the National Basic Research Program of China under Grant NoS 2009CB929201 and 2006CB921300, and Shanghai Leading Academic Discipline Project under Grant No B113.
关键词 Condensed matter: electrical magnetic and optical Surfaces interfaces and thin films Condensed matter: electrical, magnetic and optical Surfaces, interfaces and thin films
  • 相关文献

参考文献19

  • 1Nogues J et al 1999 J. Magn. Magn. Mater. 192 203. 被引量:1
  • 2Berkowitz A E et al 1999 J. Magn. Magn. Mater. 200 552. 被引量:1
  • 3Chappert C 1986 Phys. Rev. B 34 3192. 被引量:1
  • 4Svalov A V et al 2001 Chin. Phys. Lett. 18 973. 被引量:1
  • 5Geshev J et al 2001 Phys. Rev. B 64 184411. 被引量:1
  • 6McMichael R D et al 1998 Phys. Rev. B 58 8605. 被引量:1
  • 7Rodriguez-Suarez R L, Vilela Leao L H, Aguiar F M,Rezende S M and Azevedo A 2004 J. Magn. Magn. Mater. 272 1212. 被引量:1
  • 8Pechan M J et al 2002 Phys. Rev. B 65 064410. 被引量:1
  • 9Xi H et al 2000 J. Appl. Phys. 87 4367. 被引量:1
  • 10Chien C L et al 2003 Phys. Rev. B 68 014418. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部