期刊文献+

一种人脸表情的矢量分解与合成算法

A vector resolution and composition algorithm of facial expression
原文传递
导出
摘要 提出了一种人脸表情的矢量分解与合成算法,能将任意图像分解为6种基本表情的矢量和。根据分解的结果,可以实现表情强度的估计和表情的识别,也可以根据给定的表情强度参数合成各种表情图像,克服了表情强度估计、表情的分解与合成中需要手工标注特征点的问题,降低了训练集的不同对表情识别的影响。 A vector resolution and composition algorithm of facial expression is proposed. An expression image can be decomposed into vector addition of six basic expressions using the algorithm. Expression intensity is estimated according to the decomposed results. The algorithm can also synthesize the expression image in light of given expression intensity values. The algorithm settles the problem that feature points had to be labeled by hand in lots of expression intensity estimation, facial expression decomposition and composition algorithms, and reduces the influence of training set on expression recognition.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2009年第6期812-815,共4页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60776834) 湖南省教育厅科研资助项目(08C606)
关键词 人脸表情 李普希茨嵌入(LE) 流形 非线性映射 表情强度 facial expression lipschitz embedding(LE) manifold nonlinear mapping expression intensity
  • 相关文献

参考文献13

  • 1LIU Dian-ting,ZHOU Xiao-dan,WANG Cheng-wen.Wavelet-based multispectral face recognition[J].Optoelectronics Letters,2008,4(5):384-386. 被引量:6
  • 2付晓峰,韦巍.基于有监督的Laplacianfaces和局部二元模式的人脸表情识别[J].光电子.激光,2008,19(6):823-827. 被引量:7
  • 3Gralewski L,Campbell N, Penton-Voak I. Using a tensor framework for the analysis of facial dynamics[A]. Proceedings of 7th International Conference of Automatic Face and Gesture Recognition[C]. 2006, 217-222. 被引量:1
  • 4Lijun Y,Xiaozhou W,Peter Longo,et al. Analyzing facial expressions using intensity-variant 3D data for human computer interaction[A]. Proceedings of the 18th international Conference on Pattern Recognition[C]. 2006,1248-1251. 被引量:1
  • 5Hammal Z,Couvreur L,Caplier A,et al. Facial expression classification:an approach based on the fusion of facial deformations using the transferable belief model [J]. International Journal of Approximate Reasoning,2007,46(3) :542-567. 被引量:1
  • 6Lion J J J,Kanade T,Cohn J F,et al. Subtly differont facial expression recognition and expression intensity estimation[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1998,853-859. 被引量:1
  • 7Ka K L,Yangshong X. Real-time estimation of facial expression intensity[A]. Proceedings of the International Conference on Robotics and Automation[C]. 2003,2567-2572. 被引量:1
  • 8Abboud B,Davoine F,Dang M. Statistical modeling for facial expression analysis and synthesis[A]. Proceedings of International Conference on Image Processing[C]. 2003,653-656. 被引量:1
  • 9Chan-Su L,Elgammal A. Nonlinear Shape and appearance models for facial expression analysis and synthesis[A]. Proceedings of 18th Intemational Conference on Pattern Recognition[C]. 2006,497-502. 被引量:1
  • 10Khadoudja G,Alice C,Sebastien S. Estimation of facial expression intensity based on the belief theory[A]. Proceedings of International Conference on Computer Vision Theory and Applications[C]. 2008, 452-460. 被引量:1

二级参考文献17

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部