期刊文献+

结合Gabor特征与Adaboost的人脸表情识别 被引量:48

Facial Expression Recognition Based on Gabor Feature and Adaboost
原文传递
导出
摘要 通过提取人脸图像的Gabor特征,结合Adaboost,进行人脸表情识别(FER)。针对Gabor特征维数高、冗余大的特点,引入Adaboost算法进行特征选择降低特征向量的维数。然后再以支持向量机(SVM)和最近邻分类法相结合组成分类器进行分类。该方法综合运用了Gabor特征对于人脸表情的良好表征能力、Adaboost算法的强大特征选择能力以及SVM在处理少样本、高维数问题中的优势。在JAFFE库上进行测试的结果验证了该法的有效性。从Adaboost所选择的特征集可知,在眼和嘴区域提取的特征,对于FER是最为重要的。 An approach is proposed to recognize the facial expression using Gabor feature and Adaboost. Since the high-dimensional Gabor feature vectors are quite redundant,Adaboost is introduced as a method of features selection. Furthermore,combined with the nearest distance classifier, the support vector machine(SVM) is used for classification. This approach takes the advantages of the favorable ability of Gabor feature in representing expression variability, the effective function of Adaboost in feature selection, and the high performance of SVM in the solution to small sample size, high dimension problems. Experiments with JAFFE show that the approach is quite effective. Meanwhile,the feature set selected by Adaboost also indicates that the features extracted from eye and mouth regions play the most important role in expression recognition.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2006年第8期993-998,共6页 Journal of Optoelectronics·Laser
基金 国家重点攻关资助项目(2001BA811B07)
关键词 人脸表情识别(FER) GABOR滤波器 ADABOOST 特征选择 支持向量机(SVM) facial expression recognition (FER) Gabor filter Adaboost feature selection support vector machine(SVM)
  • 相关文献

参考文献12

  • 1Bourel F,Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics[A]. Fifth IEEE International Conference on Automatic Face and Gesture Recognition [C] .2002,106-111. 被引量:1
  • 2Ma L, Khorasani K. Facial expression recognition using constructive feedforward neural networks [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2004,34(3) :1588-1595. 被引量:1
  • 3王志良,陈锋军,薛为民.人脸表情识别方法综述[J].计算机应用与软件,2003,20(12):63-66. 被引量:39
  • 4左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 5Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with Gabor wavelets[A]. Third IEEE ConfFace and Gesture Recognition [C] . 1998,200-205. 被引量:1
  • 6Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 ( 12 ) :1357-1362. 被引量:1
  • 7Zhang Z, Lyons M, Schuster M, et al. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron[A].Third IEEE Conf Face and Gesture Recognition [C]. 1998,454-459. 被引量:1
  • 8顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 9Lee T. Image representation using 2-D Gabor wavelets[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18 (10) : 959-971. 被引量:1
  • 10Paul Viola, Michael Jones. Robust real-time face dete[J].International Journal of Computer Vision, 2004,57 ( 2 ):137-154. 被引量:1

二级参考文献15

  • 1斯托曼(张燕云译).情绪心理学[M].辽宁出版社,.. 被引量:1
  • 2Lyons M,Akamatsu S,Kamachi M,et al.Coding facialexpressions with Gabor wavelets[A].In:Proc.Third IEEE Conf.Face and Gesture Recognition[C].1998.200-205. 被引量:1
  • 3Huang C L,Huang Y M.Facial expression recognition using model-based feature extraction and action parameters classification[J].J Visual Comm and Image Representation,1997,8(3):278-290. 被引量:1
  • 4Essa I,Pentland A.Coding,analysis interpretation,recognition of facial expressions[J].IEEE Trans Pattern Analysis and Machine Intelligence,1997,19(7):757-763. 被引量:1
  • 5Cootes T F,Edwards G J,Taylor C J.Active appearance models[A].In:5th European Conference on Computer Vision[C].1998.484-498. 被引量:1
  • 6Edwards G J,Cootes T F,Taylor C J.Face recognition using active appearance models[A].In:Proc.European Conf.Computer Vision[C].1998.581-695. 被引量:1
  • 7Abboud B,Davoine F,Dang M.Statistical modeling for facial expression analysis and synthesis[A].In:IEEE International Conference on Image Processing[C].2003.14-17. 被引量:1
  • 8Edwards G J,Cootes T F,Taylor C J.Advances in active appearance models[A].In:Proc International Conference on Computer Vision[C].1999.137-142. 被引量:1
  • 9Pentland A, Moghaddam B, Starner T. View-based andmodular eigenspaces for face recognition[A].In:Proceedings of the IEEE Conference on CVPR[J].1994.84-91. 被引量:1
  • 10Bishop C.Neural Networks for Pattern Recognition[M].Oxford:Clarendon Press,1995. 被引量:1

共引文献69

同被引文献484

引证文献48

二级引证文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部