摘要
通过对旋转状态下曲率通道的气膜冷却现象的流动和换热进行数值模拟,得到了不同旋转数下凸表面和凹表面的冷却效率分布。计算选用剪切应力输运(SST)湍流模型,主流雷诺数ReD=4797,吹风比M=0.4,旋转数Rt=0~0.0239。研究结果表明,旋转数对冷却效率的影响明显:旋转数的增大使得气膜的轨迹偏转越明显,并且凸表面上气膜轨迹的偏转程度高于凹表面的。凸表面的冷却效率随着旋转数的增加而逐渐减小,而凹表面的冷却效率随着旋转数的增加而递增,并且旋转数的增加会弱化凸表面和凹表面上冷却效率的差别。
A numerical study is conducted to investigate the cooling performance of films over rotating curved surfaces, and the influence of rotation number is obtained under different conditions. In the present study, the Reynolds number (Re) based on mainstream velocity and film hole diameter is 4 797, the blowing ratio (M) is 0.4, and the rotation number(R,) changes from 0 to 0. 023 9. A shear-stress transports (SST) model is selected for turbulence closure. The results show that the effect of the rotation number is obvious: deflection angles are improved with the increasing rotation numbers; the augmentation of R1 results in decreased adiabatic effectiveness for convex surfaces, while for concave surfaces, increasing R1 leads to improved adiabatic effec- tiveness. In addition, increasing R1 tends to bridge the differences of film cooling effectiveness between the convex and concave surfaces.
出处
《航空学报》
EI
CAS
CSCD
北大核心
2009年第9期1624-1629,共6页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金(50506002)
关键词
气膜冷却
曲率
旋转
数值模拟
冷却效率
film cooling
curvature
rotating
numerical simulation
adiabatic effectiveness