期刊文献+

新的基于预估校正法的大规模营销优化算法

New large-scale marketing optimization algorithm based on predict-correct
原文传递
导出
摘要 针对大规模一对一营销问题,提出一种时间复杂度为O(nlogn/ε)(n为决策变量数,ε为允许误差)的大规模一对一营销优化算法.它基于预估校正思想,在预估、校正步长计算中采用LDL分解,并结合列近似最小度排序算法,有效降低时间复杂度.同时,算法在预估步中引入步长参数,根据步长参数值自适应更新中心参数,使得算法具有超线性收敛性.实际测试表明,该算法可在短时间内精确求解10万以上客户规模的一对一营销优化问题. Aimed at a large-scale one-to-one marketing optimization problem, it is presented a largescale one-to-one marketing optimization algorithm with the time complexity 0(n log n/ε)(n is the number of decision-making variables and ε is the permissible error). It bases on predict-correct linear program method, uses LDL faztorization in predict-correct calculation, and uses column approximate minimum degree ordering algorithm to effectively reduce time complexity. Meanwhile, this algorithm uses step parameter in predict step, and the value of the step parameter to calculate center parameter adaptively, which makes sure that it has superlinear convergence. It is shown in the test that this algorithm can solve the one-to-one marketing optimization problem accurately in a short time, which the number of customers is 100,000 or above.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第9期160-172,共13页 Systems Engineering-Theory & Practice
基金 国家杰出青年科学基金(60425310) 国家863计划(2006AA04Z172)
关键词 一对一营销优化 预估校正法 列近似最小度排序 LDL分解 one-to-one marketing optimization predict-correct method column approximate minimum degree ordering LDL factorization
  • 相关文献

参考文献21

  • 1Johnson C, Tesch B. US eCommerce: 2005 to 2010 a five-year forecast and analysis of US online retail sales[R]. Cambridge: Forrester Research Inc, 2005. 被引量:1
  • 2唐璎璋,孙黎著..一对一营销 客户关系管理的核心战略[M].北京:中国经济出版社,2002:495.
  • 3张志平.一对一:新世纪市场营销发展的新趋势[J].商业研究,2006(1):147-149. 被引量:9
  • 4何蓓..基于预估校正法的大规模One to One营销优化算法及应用研究[D].中南大学,2006:
  • 5Wang Y, Feng X Y, Huang Y X, et al. A novel quantum swarm evolutionary algorithm for solving 0-1 knapsack problem[J]. Lecture Notes in Computer Science, 2005, 3611:698 704. 被引量:1
  • 6Bhatia A K, Basu S K. Tackling 0/1 knapsack problem with gene induction[J]. Soft Computing, 2003, 8(1): 1-9. 被引量:1
  • 7Pan L Q, Martin-Vide C. Solving multidimensional 0-1 knapsack problem by P systems with input and active membranes[J]. Journal of Parallel and Distributed Computing, 2005, 65(12): 1578-1584. 被引量:1
  • 8杜海峰,刘若辰,焦李成,王孙安.求解0-1背包问题的人工免疫抗体修正克隆算法[J].控制理论与应用,2005,22(3):348-352. 被引量:16
  • 9胡小兵,黄席樾.基于蚁群优化算法的0-1背包问题求解[J].系统工程学报,2005,20(5):520-523. 被引量:24
  • 10Pisinger D. Where are the hard knapsack problems[J]. Computers & Operations Research, 2005, 32(9): 2271- 2284. 被引量:1

二级参考文献19

  • 1米凯利维茨Z.演化程序-遗传算法和数据编码的结合[M].北京:科学技术出版社,2000.. 被引量:17
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:63
  • 3Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems Man and Cybernetics, Part B, 1996, 26(1): 29-41. 被引量:1
  • 4Dorigo M, Di C G, Gambardella L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172. 被引量:1
  • 5Dorigo M, GambardeUa L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computations, 1997, 1(1): 53-66. 被引量:1
  • 6MARTELLO S. PISINGER D, TOTH P. New trends in exact algorithms for the 0-1 knapsack problem.J .European Journal of Operational Research.2000.123(2):325 - 332. 被引量:1
  • 7周光炎.免疫学原理[M].上海:上海科学技术文献出版社,2001.16-19. 被引量:5
  • 8GEORG S. Mp-testdata[ EB/OL]. Berlin: Zuse Institute Berlin,2003[2004]. http://elib. zib. de/pub/Packages/mp-testdata/ip/sac94-suite/index. html. 被引量:1
  • 9DASGUPTA D, FORREST S. Artificial immtme systems in industrial applications [C]//MEECH J A,VEIGA M M, SMITH M H, et al.Proc of the Second Int Conf on Intelligent Processing and Manufacturing of Materials ( IPMM' 99 ). Honolulu:IEEE Press, 1999:257 -267. 被引量:1
  • 10GASPER A, COLLARD P. From GAs to artificial immune systems:improving adaptation in time dependent optimization [C]//Zbyszek Michalewicz. Proc of the Congress on Evolutionary Computation(CEC '99). Piscataway: IEEE Press, 1999:1859 - 1866. 被引量:1

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部