期刊文献+

一种基于Bayesian信念网络的客户行为预测方法 被引量:4

A approach for customer behavior precdiction based on Bayesian belief network
下载PDF
导出
摘要 提出一种基于Bayesian信念网络(BN)的客户行为预测方法.通过知识学习构建客户行为Bayesian网络(CBN),根据CBN对预实例计算联合分布概率,准确预测了一对一营销优化中的客户行为.CBN学习算法包括连线和定向部分,复杂度为O(N4)条件相关测试.在零售行业一对一营销实际应用表明,CBN学习算法较现有BN学习算法更快构建CBN,预测精度高于朴素Bayesina分类法. A new customer behavior prediction approach based on Bayesian belief network is presented. The customer behavior Bayesian network (CBN) is constructed through knowledge study, and joint probabilities are calculated with this network to precdict the customer behavior. The CBN learning algorithm is composed of connecting and directing parts, and complexity is O(N^4) conditional dependence test. The empirical applications in retail one-to-one marketing show that CBN is constructed more quickly by using this approach than other existing BN learning algorithm, and the accuracy is better than that of naive Bayesian classificiation.
作者 何蓓 吴敏
出处 《控制与决策》 EI CSCD 北大核心 2007年第6期626-631,共6页 Control and Decision
基金 国家杰出青年科学基金项目(60425310) 国家863计划项目(2006AA04Z172)
关键词 Bayesian信念网络 一对一营销 数据挖掘 客户行为预测 Bayesian belief network One-to-one marketing Data mining Customer behavior prediction
  • 相关文献

参考文献10

  • 1Alex Berson,Stephen Smith,Kurt Thearling.Building data mining applications for CRM[M].Bcijing:Posts and Telecom Press,2001. 被引量:1
  • 2Chen M C,Chiu A L,Chang H H.Mining changes in customer behavior in retail marketing[J].Expert Systems with Applications,2005,28(4):773-781. 被引量:1
  • 3Kim Eunju,Kim Wooju,Lee Yillbyung.Combination of multiple classifiers for the customer's purchase behavior prediction[J].Decision Support Systems,2002,34(2):167-175. 被引量:1
  • 4Jiawei Han,Micheline Kamber.Data minirg concepts and techniques[M].Beijing:China Machine Press,2001:196-200. 被引量:1
  • 5Arne Mauser,Ilja Bezrukov,Thomas Deselaers,et al.Predicting customer behavior using naiv e bayes and maximum entropy-Winning the data-mining-cup 2004[C].Proc Informatiktage 2005.Augustin,2005. 被引量:1
  • 6Lian Yan,Richard H Wolniewicz,Robert Dodier.Predicting customer behavior in telecommunications[J].IEEE Intelligent Systems,2004,19(2):50-58. 被引量:1
  • 7David Maxwell Chickering,David Heckerman,Christopher Meek.Large-sample learning of bayesian networks is NP-hard[J].J of Machine Learning Research,2004,5(10):1287-1330. 被引量:1
  • 8Eugene Charniak.Bayesian networks without tears[J].AI Magazine,1991,12(4):50-63. 被引量:1
  • 9Cheng J,David Bell,Liu W R.Learning bayesian networks from data:An efficient approach based on information theory[J].Artificial Intelligence,2002,137(1/2):43-90. 被引量:1
  • 10Cecil Huang,Adnan Darwiche.Inference in belief networks:A procedural guide[J].Int J ApproximateReasoning,1996,15(3):225-263. 被引量:1

同被引文献17

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部