期刊文献+

一种适于虹膜识别的特征提取算法

Effective Feature Extraction Algorithm for Iris Recognition
下载PDF
导出
摘要 为克服现有基于线性变换特征提取方法中基向量非动态和参数需指定的缺陷,分析了虹膜的几何特征和识别原理,提出用独立成分分析ICA(Independent Component Analysis)方法进行虹膜特征提取,最大限度地去了除虹膜特征空间的冗余,克服了传统线性变换特征基向量非动态的缺陷;用BP(Back Propagation)神经网络进行虹膜分类,实现特征的降维和有效表示,并在自主研制的JLU-IRIS虹膜图像库中进行小样本空间实验。结果通过三种不同的识别率100%,96.5%和92.5%,表明了该算法的正确性和有效性。 In order to avoid the shortcoming of non-dynamic base vectors and specific parameters in existing feature extraction based on linear transformation, after analyzing iris geometry features and recognition principles, an iris feature extraction using independent component analysis method is proposed. The algorithm eliminates the iris feature space redundancy furthest, and overcomes the flaw of non-dynamic feature base vectors in traditional linear transformation. The iris classification with BP neural network achieves lower dimension and effective feature expression. Experiments in small sample space using self-made iris database JLU-IRIS indicate the accuracy and validity of the algorithm through three groups of different recognitions rate 100%, 96. 5% , 92.5%.
出处 《吉林大学学报(信息科学版)》 CAS 2009年第5期520-526,共7页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展基金资助项目(SC0601019) 长春市科技发展基金资助项目(2006307)
关键词 模式识别 虹膜识别 独立成分分析 BP神经网络 pattern recognition iris recognition independent component analysis back propagation neural network
  • 相关文献

参考文献15

  • 1JAIN K, ROSS A, PRABHAKAR S. An Introduction to Biometric Recognition [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (1) : 4-20. 被引量:1
  • 2MING Xing , XU Tao , WANG Zheng-xuan 1 2 3 1. College of Computer Science and Technology, Nanling Campus,Jilin University, 5988 Renmin Street,Changchun 130022, P. R. China,2. College of Mechanical Science and Engineering, Nanling Campus,Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China,3. College of Computer Science and Technology, Qianwei Campus,Jilin University, 10 Qianwei Road, Changchun 130012, P. R. China..Using multi-matching system based on a simplified deformable model of the human iris for iris recognition[J].Journal of Bionic Engineering,2004,1(3):183-190. 被引量:2
  • 3DAUGMAN J. High Confidence Visual Recognition of Persons by a Test of Statistical Independence [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (11) : 1148-1161. 被引量:1
  • 4DAUGMAN J. How Iris Recognition Works [ J ]. IEEE Transactions on Circuits System Video Technology, 2004, 14 (1) : 21-30. 被引量:1
  • 5DAUGMAN J. New Methods in Iris Recognition [J]. IEEE Transactions on Systems, Man and Cybernetics, 2007, 37 (5) : 1167-1175. 被引量:1
  • 6DAUGMAN J, Downing C. Effect of Severe Image Compression on Iris Recognition Performance [ J ]. IEEE Transactions on Information Forensics and Security, 2008, 3 ( 1 ) : 52-61. 被引量:1
  • 7WILDES R P, ASMUTH J C, GREEN G L. A Machine Vision System for Iris Recognition [ J ]. Machine Vision Application, 1996, 9 (1) : 1-8. 被引量:1
  • 8WILDES R P. Iris Recognition: A Emerging Biometric Technology [J]. Proceeding of The IEEE, 1997, 85 (9): 1348- 1363. 被引量:1
  • 9BOLES W, BOASHAH B. A Human Identification Technique Using Images of the Iris and Wavelet Transform [ J ]. IEEE Trans on Signal Processing, 1998, 46 (4) : 1185-1188. 被引量:1
  • 10王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别[J].自动化学报,2002,28(1):1-10. 被引量:258

二级参考文献3

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993.. 被引量:28
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:51
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993.. 被引量:10

共引文献405

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部