期刊文献+

基于SIFT特征的航空像片自动匹配

SIFT-Based Automatic Match of Air-photos
下载PDF
导出
摘要 介绍了SIFT特征的的生成,包括尺度空间的生成、空间极值点检测、精确确定极值点位置、关键点方向分配和特征点描述子生成等5个步骤;其次针对航空像片的成像特点,给出了一种具体的特征匹配方法:在一个几何模型的约束下,应用可靠的匹配点来扩充其他的匹配点,然后多次应用RANSCN方法去除匹配精度较低的点.最后,给出了3组具体的航空像片进行实验.实验结果表明:不论是森林、居民地,还是河流,用这种方法都能找到很多特征点.但是,对重叠区域的匹配点进行分析得出:匹配点的多少不仅与重叠区域的大小有关,而且与影像所处的位置有关,对于特征比较明显的河流、居民地等地区,能找到很多匹配点,匹配成功率高;但对于特征不明显的森林地区,能找到的匹配点少,匹配成功率低,有些匹配点有明显的错误,这时可以通过手动或平差的方法去除匹配错误点. In this paper, SIFT features which have obtained a success in the panoramic image matching are used in the air - photos matching problem. Firstly, generation of features of SIFT( Scale Invariant Feature Transform) is introduced, which contains five steps: generation of scale - space, cable - space extreme detection, accurate key point location, key point orientation assignment and key point descriptor representation. Secondly, in view of the imaging characteristics of air - photos, a specific feature matching method is given: reliable match points are expanded to get more matching points, and the points with lower accuracy are removed by using RANSCN repeatedly. Finally, by making an experiment with three groups of specific air - photos, whether it is forest, residential area, or river, this method can find a lot of feature points. However, analyzing the matching points of the overlapping region shows that the number of matching points is related with not only the size of the overlap region, but also the locations of the image, and more match points will be found in the obvious characteristics image, such as river, residential area and so on with a high success rate, whereas the indistinct forest areas only can find less matching points with low success rate and clear mistake, and at this time, the wrong point can be removed manually.
作者 莫雪强 房斌
出处 《重庆工学院学报(自然科学版)》 2009年第9期110-114,共5页 Journal of Chongqing Institute of Technology
关键词 自动匹配 SIFT特征 航空像片 特征点 automatic matching scale invariant feature transform feature air-photos feature point
  • 相关文献

参考文献6

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision,200g,60(2) :91 - 110. 被引量:1
  • 2左森,郭晓松,万敬,杨必武.宽基线视差图像的拼接算法[J].计算机工程,2007,33(10):175-177. 被引量:6
  • 3Brown M, Lowe D G. Recognizing Panoramas; Computer Vision[ C]//2003. Proceedings. Ninth IEEE International Conference.[S. l. ] : [s. n. ] ,2003:1218 - 1225. 被引量:1
  • 4David G Lowe. Local Feature View Clustering for 3D Objec Recognition; Computer Vision and Pattern Recognition[ c ] J/Proceedings of the 2001 IEEE Computer Society Conference on Volume 1. [ S. l. ] : [ s. n. ], 2001 :1-682 - 1-658. 被引量:1
  • 5He Guo, Zhenyu Guo, Dong Han. Improved SIFT on Key point Descriptors for Preciseness and Conciseness [ C ] //The 1st International Conference on Graphic Communications. [S. [. ] :[s. n. ] ,2006:134 - 140. 被引量:1
  • 6Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Automated Cartography [ J ]. Communication of the ACM,1981,24(6) : 381 -395. 被引量:1

二级参考文献6

  • 1Dornaika F,Chung R.Mosaicking Images with Parallax[J].Signal Processing Image Communications,2004,19(8):771-786. 被引量:1
  • 2Mikolajczyk K,Schmid C.Scale & Affine Invariant Interest Point Detectors[J].International Journal of Computer Vision,2004,60 (1):63-86. 被引量:1
  • 3Lowe D.Distinctive Image Features from Scale-invariant Key Points[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 4Xie Jun,Tsui H.Wide Baseline Stereo Matching by Corner-edgeregions[C]//Proc.of Image Analysis and Recognition:International Conference,Porto,Portugal.2004:713-720. 被引量:1
  • 5Bay H,Ferrari V,Gool L V.Wide-baseline Stereo Matching with Line Segments[C]//Proc.of IEEE Computer Society International Conference on Computer Vision and Pattern Recognition,San Diego,CA,USA.2005:329-336. 被引量:1
  • 6解凯,郭恒业,张田文.图像Mosaics技术综述[J].电子学报,2004,32(4):630-634. 被引量:59

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部