期刊文献+

基于农业生产条件的河南粮食产量组合模型研究 被引量:2

Model of Grain Yield in Henan Province Based on Conditions of Agriculture
下载PDF
导出
摘要 通过对1990~2007年河南粮食产量的分析,在影响粮食产量的诸多因素中选出农业生产条件等8个主要影响因素。基于粮食生产系统的复杂性,建立偏最小二乘回归与BP神经网络耦合模型。偏最小二乘法通过对自变量中的信息进行组合和提取,有效克服变量之间的多重相关性问题,实现了对高维数据的降维处理,同时降低了神经网络的输入维数,提高了网络的学习效率和稳健性,从而充分利用了2类现代建模方法的优点。结果表明,偏最小二乘神经网络耦合模型研究河南粮食产量的拟合精度和预测精度都比较理想。 The grain yield of Henan Province was analyzed from 1990 to 2007. There were many complex factors affecting the grain yield. So a composition model was proposed by combining neural network model with the partial least square method. The factors were analyzed by means of partial least square method to find the most important components, so that the problem of multi-correlation among variables could be solved, and the amount of input dimensions of the neural network could be reduced. When the neural network was applied, it could solve the non-linear problem and improve the expression ability of the model. The results showed that the proposed model had higher fitting accuracy and prediction accuracy.
出处 《安徽农业科学》 CAS 北大核心 2009年第28期13971-13973,共3页 Journal of Anhui Agricultural Sciences
关键词 农业生产条件 粮食 产量 偏最小二乘法 BP神经网络 Conditions of agriculture Grain Yield Partial least square method BP neural network
  • 相关文献

参考文献10

二级参考文献36

共引文献143

同被引文献33

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部