期刊文献+

GP-MaxEnt模型的蛋白质二级结构预测 被引量:1

Protein secondary structure prediction based on GP-MaxEnt model
下载PDF
导出
摘要 针对单序列蛋白质二级结构预测问题,提出了一种基于高斯先验最大熵(GP-MaxEnt)模型的预测方法.该方法根据氨基酸的构象偏好进行特征构造,利用改进迭代缩放算法(ⅡS)训练高斯先验最大熵模型.使用CB513数据集对GP-MaxEnt模型进行了测试分析.试验表明,该方法简单有效,能够获得较好的预测精度. Aimed at solving the problem of single-sequence protein secondary structure prediction, a novel method based on Gaussian prior maximum entropy (GP-MaxEnt) model is proposed. In this method, the feature construction was firstly performed based on the conformational preference of amino acid residues, and the improved iterative scaling (IIS) method was used to train the GP-MaxEnt model. CB513 dataset was employed to test this model. The experimental results indicate that the proposed method is effective and can achieve better results in predictive accuracy.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第8期65-68,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60571025) 国家高技术研究发展计划资助项目(2006AA01Z308)
关键词 蛋白质二级结构预测 单序列预测 最大熵模型 高斯先验 protein secondary structure prediction single-sequence prediction maximum entropy model Gaussian prior
  • 相关文献

参考文献11

  • 1CHOU P Y, FASMAN G D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins [J]. Biochemistry, 1974, 13(2) : 211 -222. 被引量:1
  • 2POLLASTRI G, PRZYBYLSKI D, ROST B, et al. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles [ J ]. Proteins: Structure, Function, and Genetics, 2002, 47 (2) : 228 - 235. 被引量:1
  • 3ZHANG G Z, HUANG D S, ZHU Y P, et al. Improving protein secondary structure prediction by using the residue conformational classes [ J ]. Pattern Recognition Letters, 2005, 26(15): 2346-2352. 被引量:1
  • 4GUO J, CHEN H, SUN Z R, et al. A novel method for protein secondary structure prediction using dual-layer SVM and profiles[J]. Proteins,2004,54(4) :738 -743. 被引量:1
  • 5KARYPIS G. YASSPP: Better Kernels and Coding Schemes Lead to Improvements in Protein Secondary Structure Prediction [ J ]. PROTEINS, 2006, 64 ( 3 ) : 575 - 586. 被引量:1
  • 6AVDIN Z, ALTUNBASAK Y, BORODOVSKY M. Protein secondary structure prediction for a single sequence using hidden semi-Markov models [ J ]. BMC Bioinformatics, 2006, 7 ( 1 ) : 178. 被引量:1
  • 7WON K J, HAMELRYCK T, BENNETt A P, et al. An evolutionary method for learning HMM structure: prediction of protein secondary structure [ J ]. BMC Bioinformatics, 2007(8) :357. 被引量:1
  • 8AVDIN Z, ALTUNBASAK Y, ERDOGAN H. Bayesian Protein Secondary Structure Prediction With Near-Optimal Segmentations [ J ]. IEEE Transactions on Signal Processing, 2007, 55 (7) : 3512 - 3525. 被引量:1
  • 9PIETRA S D, PIETRA V D, LAFFERTY J. Inducing features of random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (4): 380 - 393. 被引量:1
  • 10CHEN S F, ROSENFELD R. A survey of smoothing techniques for ME models [ J]. IEEE Trans. on Speech and Audio Processing, 2000, 8( 1 ) :37 -50. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部