期刊文献+

基于Tri-training的评价单元识别 被引量:4

Appraisal expression recognition based on Tri-training
下载PDF
导出
摘要 评价单元的识别是情感倾向性分析中重要的一步,但由于标注语料匮乏,大多数研究集中在用人工构建规则、模板来识别评价单元的方法上。为了减轻标注训练语料的工作,同时进一步挖掘未标记样本的信息,提出一种基于协同训练机制的评价单元识别算法,以利用少量的已标记样本和大量的未标记样本来提高识别性能。该算法利用Tri-training的思想,将支持向量机(SVM)、最大熵(MaxEnt)以及条件随机场(CRF)三个不同分类器组合成一个分类体系,对生成的评价单元候选集进行分类。将Tri-training的算法思想应用于实验来对比采用单一分类器的方法,结果表明,该算法能够有效地识别主观句中的评价单元。 Appraisal expression recognition is very important in sentiment analysis.Because of the lack of labeled corpus,most former works in appraisal expression recognition are focused on construction of rules and templates manually.In order to reduce the training work of labeling corpus and further mining information of unlabeled corpus,a new algorithm based on co-training was proposed,which mainly used massive unlabeled corpus and only a small number of labeled corpus.The proposed algorithm was based on Tri-training and combined Support Vector Machine (SVM),Maximum Entropy (MaxEnt) and Conditional Random Field (CRF) to build a new approach for candidate appraisal expression classification.By comparing the Tri-training based algorithm with the former single classifier based algorithms,the former can effectively improve the performance of appraisal expression recognition in subjective sentences.
出处 《计算机应用》 CSCD 北大核心 2014年第4期1099-1104,共6页 journal of Computer Applications
基金 国家科技支撑计划项目(2013BAH11F03)
关键词 半监督学习 协同训练 TRI-TRAINING 评价单元 依存分析 评价对象 semi-supervised learning co-training Tri-training appraisal expression dependence analysis opinion target
  • 相关文献

参考文献16

二级参考文献85

共引文献580

同被引文献46

  • 1聂卉,何欢.引入词向量的隐性特征识别研究[J].数据分析与知识发现,2020,4(1):99-110. 被引量:2
  • 2陈刚,杨志强,刘秉权.一种基于PLS的概率神经网络分类算法[J].微电子学与计算机,2015,32(5):73-78. 被引量:4
  • 3http://www.csie.ntu.edu.tw/-cjlin/libsvm/. 被引量:11
  • 4NLPIR/ICTCLAS汉语分词系统[EB/OL].[2014-07-19].http://ictclas.nlpir.org/. 被引量:3
  • 5Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data [C]// 17th International Conference on Machine Learning, Stanford, USA, 2000: 327-334. 被引量:1
  • 6Zhou Z H, Li M. Tri-Training: Exploiting unlabeled data using three classifiers[J ]. IEEE Transactions on Knowl- edge and Data Engineering, 2005, 17(11): 1529 -1541. 被引量:1
  • 7Angluin D, Laird P. I.eaming from noisy examples[J]. Machine Learning, 1988, 2(4), 343 - 370. 被引量:1
  • 8Zhu X, Ghahramani Z. Learning from labeled and unla- beled data with label propagation [ R]. Pittsburgh: Carnegie Mellon University, 2002. 被引量:1
  • 9http: //www. cnnic, net. cn/hlwfzyj/hlwxzbg/hlwtjbg/201507/ P020150723549500667087. pdf, 2015. 被引量:1
  • 10HUANG S, NIU Z, SHI C. Automatic construction of domain- specific sentiment lexicon based on constrained label propaga- tion [J]. Knowledge-Based Systems. 2014, 56: 191-200. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部