期刊文献+

Improved Upper Bounds for the Largest Eigenvalue of Unicyclic Graphs

Improved Upper Bounds for the Largest Eigenvalue of Unicyclic Graphs
下载PDF
导出
摘要 Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti and ec = max{eui : i = 1, 2 , m}. Let κ = ec+1. Forj = 1,2,...,k- 1, let δij = max{dv : dist(v, ui) = j,v ∈ Ti}, δj = max{δij : i = 1, 2,..., m}, δ0 = max{dui : ui ∈ V(Cm)}. Then λ1(G)≤max{max 2≤j≤k-2 (√δj-1-1+√δj-1),2+√δ0-2,√δ0-2+√δ1-1}. If G ≌ Cn, then the equality holds, where λ1 (G) is the largest eigenvalue of the adjacency matrix of G. Let G(V,E) be a unicyclic graph,Cm be a cycle of length m and Cm G,and ui ∈ V(Cm).The G-E(Cm) are m trees,denoted by Ti,i = 1,2,...,m.For i = 1,2,...,m,let eui be the excentricity of ui in Ti andec = max{eui:i = 1,2,...,m}.Let k = ec+1.For j = 1,2,...,k-1,letδij = max{dv:dist(v,ui) = j,v ∈ Ti},δj = max{δij:i = 1,2,...,m},δ0 = max{dui:ui ∈ V(Cm)}.ThenIf G≌ Cn,then the equality holds,where λ1(G) is the largest eigenvalue of the adjacency matrix of G.
作者 HU Sheng Biao
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期945-950,共6页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10861009).
关键词 unicyclic graph adjacency matrix largest eigenvalue. 最大特征值 单圈图 上界 用户界面 最大值 Cn空间 邻接矩阵 欧共体
  • 相关文献

参考文献7

  • 1GODSIL C D. Spectra of Trees [M]. North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984. 被引量:1
  • 2STEVANOVIC D. Bounding the largest eigenvalue of trees in terms of the largest vertex degree [J]. Linear Algebra Appl., 2003, 860: 35-42. 被引量:1
  • 3HU Shengbiao. The largest eigenvalue of unicycllc graphs [J]. Discrete Math., 2007, 307(2): 280-284. 被引量:1
  • 4ROJO O. Improved bounds for the largest eigenvalue of trees [J]. Linear Algebra Appl., 2005, 404: 297-304. 被引量:1
  • 5HU Shengbiao. A note on an upper bound for the largest eigenvalue of trees [J]. Acta Math. Sinica (Chin. Ser.), 2007, 50(1): 145-148. 被引量:1
  • 6GODSIL C D. Algebraic Combinatorics [M]. Chapman & Hall, New York, 1993. 被引量:1
  • 7BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc. New York, 1976. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部