期刊文献+

核不相关辨别子空间雷达目标一维像识别 被引量:2

Kernel Uncorrelated Discriminant Subspace Algorithm for Recognition of Radar Target Range Profiles
下载PDF
导出
摘要 针对不相关辨别分析方法在目标类别数较多时计算量大,且可能面临散度矩阵奇异的问题,提出了一种核不相关辨别子空间算法,并将其用于雷达目标一维距离像识别。新算法继承了原方法提取目标统计不相关辨别特征的优点,同时利用核机器学习理论与广义奇异值分解,有效解决了计算量与矩阵奇异的问题,并进一步改善了目标的类可分性。对ISAR实测飞机数据进行了分类,并与几种经典核非线性方法进行了比较,结果表明所提方法的识别性能得到了明显改善。 Uncorrelated discriminant analysis(UDA) often suffers from the computational cost problem and the singular problem of scatter matrices. To address these problems, a novel algorithm, namely kernel uncorrelated discriminant subspace(KUDS), is proposed and applied in recognition of radar target range profiles. The new algorithm inherits the advantage of extracting statistically uncorrelated discriminant feature. Meanwhile, by utilizing the kernel trick and generalized singular value decomposition(GSVD), it effectively overcomes the limitations of computational cost and singularity and further improves the class separability. Experiments on measured ISAR data are evaluated together with a comparison to several classical kernel nonlinear methods. The results show that the classification performance of the proposed method is encouraged.
出处 《雷达科学与技术》 2009年第4期262-266,共5页 Radar Science and Technology
基金 国家自然科学基金(No.60702070)
关键词 雷达目标识别 核不相关辨别子空间 广义奇异值分解 一维距离像 radar target recognition kernel uncorrelated diseriminant subspace generalized singular value decomposition range profile
  • 相关文献

参考文献1

二级参考文献8

  • 1[4]Cheng Yong-Qing, Zhuang Yong-Ming, Yang Jing-Yu. Optimal Fisher discriminant analysis using the rank decomposition.Pattern Recognition, 1992, 25(1) :101~111 被引量:1
  • 2[5]Liu Kc, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7):731~739 被引量:1
  • 3[10]Wilks S S. Mathematical Statistics. New York: Wiley, 1962 被引量:1
  • 4[11]Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973 被引量:1
  • 5[12]Fukunaga K. Introduction to Statistical Pattern Recognition.New York: Academic Press, 1990 被引量:1
  • 6[1]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computers, 1975, 24(3): 281~289 被引量:1
  • 7[2]DucheneJ, Leclercq S. An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6): 978~983 被引量:1
  • 8[3]Hong Zi Quan, Yang Jing-Yu. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 1991, 24(4):317~324 被引量:1

共引文献8

同被引文献23

  • 1刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1334. 被引量:71
  • 2Benesty J, Chen J D, Huang Y T. A Generalized MVDR Spectrum[J]. IEEE Signal Processing Letters, 2005, 12(12) :827-830. 被引量:1
  • 3Ni Jinlin. Bearing(Frequency) Estimation via MUSIC Spectrum Estimator Without Eigendecomposition[C] //ISCAS'92 Proceedings, San Diego, CA: [s. n. ], 1992:1463-1466. 被引量:1
  • 4Li H J, Yang S H. Using Range Profiles as Features Vectors to Identify Aerospace Objects [J]. IEEE Trans on Antennas and Propagation, 1993, 41 (3): 261 -268. 被引量:1
  • 5Copsey K, Webb A R. Bayesian Gamman Mixtuer Model Approach to Radar Target Recognition [J]. IEEE Trans on AES, 2003, 39(4) :1201-1217. 被引量:1
  • 6Du lan, Liu Hongwei, Bao Zheng, et al. A Two Distribution Compounded Statistical Model for Radar HRRP Target Reeognition[J]. IEEE Trans on Signal Processing, 2006, 54(6):2226-2238. 被引量:1
  • 7Du lan, Liu Hongwei, Bao Zheng, et al. Radar HRRP Statistical Recognition: Parametric Model and Model Selection[J].IEEE Trans on Signal Processing, 2008, 56(5):1931-1944. 被引量:1
  • 8Tipping M E, Bishop C M. Probabilistic Principal Component Analysis [J]. Royal Statistical Society, 1999, 61(3):611- 622. 被引量:1
  • 9Singhal A, Seborg D E. Matching Patterns from Historical Data Using PCA and Distance Similarity Factors[C]. Proceedings of the American Control Conference, [s. l. ]:[s. n. ], 2001:1759-1764. 被引量:1
  • 10Rife D, Boorstyn R. Single Tone Parameter Estimation from Discrete-Time Observations[J]. IEEE Trans on Information Theory, 1974, 20(5) :591-598. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部