期刊文献+

基于多因素粒子群—神经网络算法的短期电价预测 被引量:1

下载PDF
导出
摘要 本文提出在神经网络训练中引入基于全局随机优化思想的粒子群优化(PSO)算法,先利用PSO优化BP神经网络的初始权值,然后采用神经网络完成给定精度的学习,建立了粒子群-BP神经网络模型。对美国PJM电力市场的实际电价(LMP)进行预测,与传统BP神经网络相比,该方法收敛速度快、所需历史数据少、预报精度高,验证了该方法的有效性和可行性。
出处 《科技信息》 2009年第24期182-182,共1页 Science & Technology Information
  • 相关文献

参考文献4

二级参考文献41

共引文献30

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部