期刊文献+

核回归方法的散点拟合曲面重构 被引量:4

Kernel Regression Method for Fitting Surface of Scattered Points
下载PDF
导出
摘要 散点曲面重构是计算机图形学中的一个基本问题,针对这个问题提出了一种全新的基于核回归方法的散点曲面重构方法,使用二维信号处理方法中非参数滤波等成熟手段进行曲面重构.这种方法可以生成任意阶数连续的曲面,在理论上保证了生成曲面的连续性,可以自定义网格的拓扑,在曲率大或者感兴趣的局部能够自适应调整网格点的密度,生成的结果方便LOD建模,数据的拟合精度也可以通过调整滤波参数控制,算法自适应调整滤波器的方向,使结果曲面可以更好保持尖锐特征.同时在构造过程中避免了传统的细分曲面方法中迭代、Delaunay剖分和点云数据中重采样等时间开销大的过程,提高了效率.对于采样不均、噪声较大的数据,该算法的鲁棒性很好.实验表明这种曲面建模方法能够散点重构出精度较高的连续曲面,在效率上有很大提高,在只需要估计曲面和其一阶导数时,利用Nadaraya-Watson快速算法可以使算法时间复杂度降为O(N),远低于其他曲面重构平滑方法.同时算法可以对曲面的局部点云密度、网格顶点法矢等信息做有效的估计.重构出的曲面对类似数字高程模型(DEM)的数据可以保证以上的优点.但如果散点数据不能被投影到2维平面上,曲面重构就需要包括基网格生成、重构面片缝合等过程.缝合边缘的连续性也不能在理论上得到保证. The fitting surface of scattered points is a basic problem in computer graphics. This paper proposed a new way to reconstruct meshes from unorganized points, which uses a mature technique nonparametric filter in 2D signal processing. This method generates a order-n continuous surface to guarantee the continuity of the surface, and the user can define any type of mesh topology. It's easy to adjust the density of the mesh points in the region of interest or where the curvature is large. And the LOD model is easy to set up. The accuracy of the fitting can be modified by the filter parameter, and the direction of the filter is adaptive to maintain the characteristic of the result surface. On the other hand, it avoids the time consuming reconstructing process like iterative subdivision surface, Delaunay triangulation and the resampling in point cloud data. The robustness of the method is better when dealing with noisy and nonuniform sampling data cloud. The experiments show that this algorithm generates accurate continuous surfaces, and becomes more efficient. If only the surface and its first derivative should be estimated, the Nadaray-Watson fast algorithm reduce the time complexity of the algorithm to O(N), far less then other surface reconstructed methods. And some useful information such as the density of local points cloud and the normal vectors of the vertexes on the mesh can be estimated in the process. The surface constructed by this algorithm can retains all the advantage listed above on DEM data. But if the points cannot be projected onto a 2D plan, the reconstructed process will include generating basic meshes and stitching the surface path. And the continuity on the margin cannot be guaranteed.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第9期1446-1455,共10页 Journal of Computer Research and Development
关键词 散乱点曲面拟合 非参数核回归 自适应核回归 Nadaraya-Watson估计 点云密度估计 regression the fitting Nadaray-W surface of scattered atson estimation de points nonparametric kernel regression adaptive kernel nsity of point cloud estimation
  • 相关文献

参考文献23

  • 1Hoppe H, DeRose T, Duehamp T, et al. Surface reconstruction from unorganized points[C]//Proc of ACM SIGGRAPH 1992. Reading, MA: Addison-Wesley, 1992: 71-81. 被引量:1
  • 2Boissonnat J D. Geometric structures of three-dimensional shape reconstruction [J].ACM Trans on Graphics, 1984, 3 (4) : 266-86. 被引量:1
  • 3Edelsbrunner H, Mticke E. 3D alpha shapes [J]. ACM Trans on Graphics, 1994, 13(1): 43-72. 被引量:1
  • 4Veltkamp R C. Boundaries through scattered points of unknown density [J]. Graphical Models Imag Process, 1995, 57(6): 441-52. 被引量:1
  • 5Kirkpatrick D G, Radke J D. A framework for computational morphology [J]. Comput Geometry, 1985, 3(3) : 217-228. 被引量:1
  • 6Bernardini F, Mittleman J, Rushmeier H, et al. The ballpivoting algorithm for surface reconstruction [J]. IEEE Trans on Visualization Comput Graphics, 1999, 5(4): 349- 59. 被引量:1
  • 7Huang J, Menq C H. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology [J]. Computer-Aided Design, 2002, 34: 149-165. 被引量:1
  • 8Petitjean S, Boyer E. Regular, non-regular point sets: properties and reconstruction [J]. Comput Geometry, 2001, 19:101-126. 被引量:1
  • 9Silverman B W. Density Estimation for Statistics and Data Analysis [M] ser. Monographs on Statistics and Applied Probability. New York:Chapman & Hall, 1986. 被引量:1
  • 10Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction [J]. IEEE Trans on Image Process, 2007, 16(2): 349-366. 被引量:1

二级参考文献33

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2Farin G, Hoschek J, Kim M S. Handbook of computer aided geometric design[M]. Amsterdam: North-Holland, 2002: 651-681 被引量:1
  • 3Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256 被引量:1
  • 4Chen Y, Medioni G. Object modeling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155 被引量:1
  • 5Potmesil M. Generating models of solid objects by matching 3D surface segments[C]//Proceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, 1983: 1089-1093 被引量:1
  • 6Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images[J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307 被引量:1
  • 7Johnson A, Hebert M. Surface registration by matching oriented points[C]//Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, 1997: 121-128 被引量:1
  • 8Yang M, Lee E. Segmentation of measured data using a parametric quadric surface approximation[J]. Computer-Aided Design, 1999, 31(7): 449-457 被引量:1
  • 9Hoppe H, DeRose T, Duchamp T. Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71- 78 被引量:1
  • 10Barequet G, Sharir M. Partial surface and volume matching in three dimensions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9): 929-948 被引量:1

共引文献96

同被引文献69

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部