期刊文献+

UNIQUENESS, ERGODICITY AND UNIDIMENSIONALITY OF INVARIANT MEASURES UNDER A MARKOV OPERATOR

UNIQUENESS, ERGODICITY AND UNIDIMENSIONALITY OF INVARIANT MEASURES UNDER A MARKOV OPERATOR
下载PDF
导出
摘要 Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where (pij) is a N x N transition probability matrix and {wij } is an family of continuous transformations on X. The authors study the uniqueness, ergodicity and unidimensionality of T*-invariant measures where T* is the adjoint operator of T. Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where (pij) is a N x N transition probability matrix and {wij } is an family of continuous transformations on X. The authors study the uniqueness, ergodicity and unidimensionality of T*-invariant measures where T* is the adjoint operator of T.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1309-1322,共14页 数学物理学报(B辑英文版)
关键词 Markov operator invariant measure ERGODICITY UNIDIMENSIONALITY Markov operator invariant measure ergodicity unidimensionality
  • 相关文献

参考文献21

  • 1Breiman L. The strong law of large numbers for a class of Markov chains. Ann Math Statist, 1960, 31: 801-803. 被引量:1
  • 2Barnsley M F, Demko S G. Iterated function systems and the global constructions of fractals. Proc R Soc London A, 1985, 399:243-275. 被引量:1
  • 3Barnsley M F, Demko S G, Elton J H, Geromino J S. Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilies. Ann Inst H Poincare-Prob Stat, 1988, 24(3): 367 394. 被引量:1
  • 4Falconer K J. Fractal Geometry. New York: Wiley, 1990. 被引量:1
  • 5Fan Aihua. Sur les dimensions de mesures. Studia Math, 1994, 111:1-17. 被引量:1
  • 6Fan Aihua. Ergodicity, unidimensionality and multifractality of self-similar measures. Kyushu J Math, 1996, 50:541-574. 被引量:1
  • 7Fan Aihua, Lau K S. Iterated function system and Ruelle operator. J Math Anal Appl, 1999, 231:319-344. 被引量:1
  • 8Huchinson J E. Fractals and self-similarity. Indiana Univ Math J, 1981, 30:713-747. 被引量:1
  • 9Lau K S, NgaJ S M. Lq-spectrum of the Bernoulli convolution associated with the golden ratio. Studia Math, 1998, 131:225-251. 被引量:1
  • 10Lau K S, Ngai S M, Rao Hui. Iterated function systems with overlaps and self-simalar measures. J London Math Soc, 2001, 63:99-116. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部