摘要
Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where (pij) is a N x N transition probability matrix and {wij } is an family of continuous transformations on X. The authors study the uniqueness, ergodicity and unidimensionality of T*-invariant measures where T* is the adjoint operator of T.
Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where (pij) is a N x N transition probability matrix and {wij } is an family of continuous transformations on X. The authors study the uniqueness, ergodicity and unidimensionality of T*-invariant measures where T* is the adjoint operator of T.