期刊文献+

Maximal Integral over Observable Measures

Maximal Integral over Observable Measures
原文传递
导出
摘要 Let f be a continuous transformation on a compact, finite-dimensional manifold M, and φ a continuous function on M. This paper establishes the following formula:ess sup lim sup n→∞1/nφn(x)=sup{∫φdμ|μ∈Of}≤lim sup n→∞1/n ess supφn(x),where ess sup denotes the essential supremum taken against the Lebesgue measure,φn(x)=∑i=0^n-1φ(f^ix)and Of is the set of observable measures. Examples are provided to illustrate that the inequality could be an equality or strict. Moreover, if μ is the unique maximizing observable measure for φ, it is weakly statistical stable. Let f be a continuous transformation on a compact, finite-dimensional manifold M, and φ a continuous function on M. This paper establishes the following formula:ess sup lim sup n→∞1/nφn(x)=sup{∫φdμ|μ∈Of}≤lim sup n→∞1/n ess supφn(x),where ess sup denotes the essential supremum taken against the Lebesgue measure,φn(x)=∑i=0^n-1φ(f^ix)and Of is the set of observable measures. Examples are provided to illustrate that the inequality could be an equality or strict. Moreover, if μ is the unique maximizing observable measure for φ, it is weakly statistical stable.
作者 Yun ZHAO
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第5期571-578,共8页 数学学报(英文版)
基金 Supported by NSFC(Grant No.11371271) the Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 Observable measure ergodic averages statistical stable Observable measure, ergodic averages, statistical stable
  • 相关文献

参考文献17

  • 1Bousch, T.: Le poisson n’a pas d’aretes. Ann. Inst. H. Poincare Probab. Stat., 36, 489-508 (2000). 被引量:1
  • 2Bousch, T., Mairesse J.: Asymptotic height optimisation for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc., 15, 77-111 (2002). 被引量:1
  • 3Bremont, J.: Gibbs measures at temperature zero. Nonlinearity, 16, 419-426 (2003). 被引量:1
  • 4Catsigeras, E., Enrich, H.: SRB-like measures for C° dynamics. Bull. Pol. Acad. Sci. Math., 59, 151-164 (2011). 被引量:1
  • 5Contreras, G., Lopes, A. O., Thieullen, P.: Lyapunov minimizing measures for expanding maps of the circle. Ergodic Theory Dynam. Systems, 21, 1379-1409 (2001). 被引量:1
  • 6Catsigeras, E., Zhao, Y.: Observable optimal state points of subadditive potentials. Discrete Contin. Dyn. Syst., 33(4), 1375-1388 (2013). 被引量:1
  • 7Hunt, B. R., Ott, E.: Optimal periodic orbits of chaotic systems. Phys. Rev. Lett., 76, 2254-2257 (1996). 被引量:1
  • 8Jenkinson, O.: Ergodic optimization. Discrete Contin. Dyn. Syst., 15, 197-224 (2006). 被引量:1
  • 9Jenkinson, O.: Frequency locking on the boundary of the barycentre set. Experiment. Math., 9, 309-317 (2000). 被引量:1
  • 10Jenkinson, O., Mauldin, R. D., Urbanski, M.: Zero-temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys., 119, 765-776 (2005). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部