期刊文献+

BFGS-GA优化的RBF网络在动态流量软测量中的应用 被引量:1

Application of RBF Neural Network Optimized by BFGS-GA in Soft Measurement System of Dynamic Flow
下载PDF
导出
摘要 在液压伺服系统动态流量软测量模型核心算法的研究中,综合考虑GA(Genetic Algorithm)和BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法在最优化问题上的优势和不足,提出BFGS-GA.在GA中引入BFGS算子,对每一代中若干个精英个体以一定概率对其进行BFGS线性迭代运算.采用BFGS-GA对实数编码的染色体进行优化,得到最优的RBF(Radial Basis Function)网络结构和参数.实验结果表明该算法比传统GA优化网络的速度提高16.09%,预测精度提高2.99%,能更好地满足动态流量软测量的要求. During studying the core algorithms of the dynamic flow soft measurement model in hydraulic servo system, a new algorithm named BFGS-GA was proposed. It took the merits and the shortcomings of the GA and the BFGS algorithm in optimization into account. A BFGS operator was introduced into the genetic algorithm. BFGS operator carded on the BFGS iterative computation by certain probability for certain elitists of every generation. The chromosomes were coded with real number and optimized by the BFGS-GA. The experimentation results show that comparing to the traditional genetic algorithm, the BFGS-GA could save the training time about 16.09% and increase the forecast precision about 2.99%. So it can satisfy the request of dynamic flow soft measurement well.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1831-1833,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(50675189)资助 河北省自然科学基金项目(F2006000267)资助
关键词 软测量 动态流量 RBF神经网络 GA BFGS算法 soft measurement dynamic flow radial basis function neural network genetic algorithm BFGS algorithm
  • 相关文献

参考文献4

二级参考文献30

  • 1范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000. 被引量:44
  • 2[2]Melda ozdin (e)arpinliogˇlu,Mehmet Ya(e)ar Gündogˇdu.A Critical review on pulsatile pipe flow studies directing towards future research topics[J].Flow Measurement and Instrumentation,2001(12). 被引量:1
  • 3[3]R.S.Scalero , Nazif Tepedelenlioglu. A fast new algorithm for training feedforward neural networks[J]. IEEE Transactions on Signal Processing,1992,40(1). 被引量:1
  • 4[4]H.H.Chen,M.T.Manry and H.Chandrasekaran. A neural network training algorithm utilizing multiple sets of linear equations[J]. Neurocomputing ,1999,25(4). 被引量:1
  • 5[5]Funahashi M J.On the approximate realization of continuouse mapping[J].Neural Network,1989(2). 被引量:1
  • 6[6]ROTH M.Neural network technology for ATR[J].IEEE Trans.Neural Networks, 1990(1). 被引量:1
  • 7袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2002.. 被引量:1
  • 8Bertsekas D P. Dynamic programming and optimal control,vol Ⅰ and Ⅱ, Belmont, MA: Athenas Scientific, 1995:12-75. 被引量:1
  • 9Fletcher R, C M Reeves. Function minimization by conjugate gradients.Computer, 1994(7): 149-154. 被引量:1
  • 10Deng C, Wu L B, Fan W C. Neural network approach for RHR calculation and prediction in fire science. In:Signal Processing, 1996, 3rd International Conference on, 1996,2:1484-1487. 被引量:1

共引文献51

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部